Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Epilepsy Res ; 184: 106965, 2022 08.
Article in English | MEDLINE | ID: mdl-35724601

ABSTRACT

Pathology in the dentate gyrus, including sclerosis, is a hallmark of temporal lobe epilepsy, and reduced inhibition to dentate granule cells may contribute to epileptogenesis. The perisomatic-targeting axonal boutons of parvalbumin-expressing interneurons decrease in proportion with granule cells in temporal lobe epilepsy. In contrast, dendrite-targeting axonal boutons of somatostatin-expressing interneurons sprout exuberantly in temporal lobe epilepsy. A third major class of GABAergic interneurons expresses cannabinoid receptor type 1 (CB1) on their terminal boutons, but there is conflicting evidence as to whether these boutons are increased or decreased in temporal lobe epilepsy. Naturally occurring temporal lobe epilepsy in California sea lions, with unilateral or bilateral sclerosis, offers the benefit of neuroanatomy and neuropathology akin to humans, but with the advantage that the entirety of both hippocampi from control and epileptic brains can be studied. Stereological quantification in the dentate gyrus revealed that sclerotic hippocampi from epileptic sea lions had fewer CB1-labeled boutons than controls. However, the reduction in the number of granule cells was greater, resulting in increased CB1-labeled boutons per granule cell in sclerotic hippocampi at temporal levels. This suggests that although CB1-expressing boutons are decreased in sclerotic dentate gyri, surviving cells have enhanced innervation from these boutons in epileptic sea lions.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Sea Lions , Animals , Dentate Gyrus/pathology , Epilepsy/pathology , Epilepsy, Temporal Lobe/pathology , Humans , Interneurons/physiology , Receptors, Cannabinoid , Sclerosis/pathology
2.
Acta Neuropathol ; 133(6): 907-922, 2017 06.
Article in English | MEDLINE | ID: mdl-28357566

ABSTRACT

Mutations in TDP-43 cause amyotrophic lateral sclerosis (ALS), a fatal paralytic disease characterized by degeneration and premature death of motor neurons. The contribution of mutant TDP-43-mediated damage within motor neurons was evaluated using mice expressing a conditional allele of an ALS-causing TDP-43 mutant (Q331K) whose broad expression throughout the central nervous system mimics endogenous TDP-43. TDP-43Q331K mice develop age- and mutant-dependent motor deficits from degeneration and death of motor neurons. Cre-recombinase-mediated excision of the TDP-43Q331K gene from motor neurons is shown to delay onset of motor symptoms and appearance of TDP-43-mediated aberrant nuclear morphology, and abrogate subsequent death of motor neurons. However, reduction of mutant TDP-43 selectively in motor neurons did not prevent age-dependent degeneration of axons and neuromuscular junction loss, nor did it attenuate astrogliosis or microgliosis. Thus, disease mechanism is non-cell autonomous with mutant TDP-43 expressed in motor neurons determining disease onset but progression defined by mutant acting within other cell types.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/metabolism , Motor Neurons/metabolism , Adult , Aged, 80 and over , Aging/metabolism , Aging/pathology , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , DNA-Binding Proteins/genetics , Disease Models, Animal , Disease Progression , Female , Humans , Inflammation/metabolism , Inflammation/pathology , Male , Mice, Inbred C57BL , Mice, Transgenic , Middle Aged , Motor Activity/physiology , Motor Neurons/pathology , Mutation , Neuromuscular Junction/metabolism , Neuromuscular Junction/pathology , Young Adult
3.
Neuron ; 90(3): 535-50, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27112497

ABSTRACT

Hexanucleotide expansions in C9ORF72 are the most frequent genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Disease mechanisms were evaluated in mice expressing C9ORF72 RNAs with up to 450 GGGGCC repeats or with one or both C9orf72 alleles inactivated. Chronic 50% reduction of C9ORF72 did not provoke disease, while its absence produced splenomegaly, enlarged lymph nodes, and mild social interaction deficits, but not motor dysfunction. Hexanucleotide expansions caused age-, repeat-length-, and expression-level-dependent accumulation of RNA foci and dipeptide-repeat proteins synthesized by AUG-independent translation, accompanied by loss of hippocampal neurons, increased anxiety, and impaired cognitive function. Single-dose injection of antisense oligonucleotides (ASOs) that target repeat-containing RNAs but preserve levels of mRNAs encoding C9ORF72 produced sustained reductions in RNA foci and dipeptide-repeat proteins, and ameliorated behavioral deficits. These efforts identify gain of toxicity as a central disease mechanism caused by repeat-expanded C9ORF72 and establish the feasibility of ASO-mediated therapy.


Subject(s)
Amyotrophic Lateral Sclerosis/drug therapy , Frontotemporal Dementia/drug therapy , Guanine Nucleotide Exchange Factors/genetics , Oligonucleotides, Antisense/pharmacology , RNA/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , C9orf72 Protein , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Mice, Transgenic , Neurons/metabolism , Oligonucleotides, Antisense/adverse effects , Oligonucleotides, Antisense/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...