Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 10(12)2018 12.
Article in English | MEDLINE | ID: mdl-30389682

ABSTRACT

We compared 24 primary pediatric T-cell acute lymphoblastic leukemias (T-ALL) collected at the time of initial diagnosis and relapse from 12 patients and 24 matched patient-derived xenografts (PDXs). DNA methylation profile was preserved in PDX mice in 97.5% of the promoters (ρ = 0.99). Similarly, the genome-wide chromatin accessibility (ATAC-Seq) was preserved remarkably well (ρ = 0.96). Interestingly, both the ATAC regions, which showed a significant decrease in accessibility in PDXs and the regions hypermethylated in PDXs, were associated with immune response, which might reflect the immune deficiency of the mice and potentially the incomplete interaction between murine cytokines and human receptors. The longitudinal approach of this study allowed an observation that samples collected from patients who developed a type 1 relapse (clonal mutations maintained at relapse) preserved their genomic composition; whereas in patients who developed a type 2 relapse (subset of clonal mutations lost at relapse), the preservation of the leukemia's composition was more variable. In sum, this study underlines the remarkable genomic stability, and for the first time documents the preservation of the epigenomic landscape in T-ALL-derived PDX models.


Subject(s)
Gene Expression Regulation , Heterografts , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Animals , Humans , Longitudinal Studies , Mice , Neoplasm Transplantation , Recurrence
2.
Chronobiol Int ; 35(11): 1543-1552, 2018 10.
Article in English | MEDLINE | ID: mdl-29993301

ABSTRACT

Circadian clock-controlled 24-h oscillations in adipose tissues play an important role in the regulation of energy homeostasis, thus representing a potential drug target for prevention and therapy of metabolic diseases. For pharmacological screens, scalable adipose model systems are needed that largely recapitulate clock properties observed in vivo. In this study, we compared molecular circadian clock regulation in different ex vivo and in vitro models derived from murine adipose tissues. Explant cultures from three different adipose depots of PER2::LUC circadian reporter mice revealed stable and comparable rhythms of luminescence ex vivo. Likewise, primary pre- and mature adipocytes from these mice displayed stable luminescence rhythms, but with strong damping in mature adipocytes. Stable circadian periods were also observed using Bmal1-luc and Per2-luc reporters after lentiviral transduction of wild-type pre-adipocytes. SV40 immortalized adipocytes of murine brown, subcutaneous and epididymal adipose tissue origin showed rhythmic mRNA expression of the core clock genes Bmal1, Per2, Dbp and REV-erbα in pre- and mature adipocytes, with a maturation-associated increase in overall mRNA levels and amplitudes. A comparison of clock gene mRNA rhythm phases revealed specific changes between in vivo and ex vivo conditions. In summary, our data indicate that adipose culture systems to a large extent mimic in vivo tissue clock regulation. Thus, both explant and cell systems may be useful tools for large-scale screens for adipose clock regulating factors.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Circadian Clocks/physiology , Circadian Rhythm/physiology , ARNTL Transcription Factors/genetics , Adiposity/physiology , Animals , CLOCK Proteins/genetics , Male , Mice , Mice, Inbred C57BL , Obesity/metabolism , Period Circadian Proteins/genetics
3.
Horm Mol Biol Clin Investig ; 19(2): 103-15, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25390019

ABSTRACT

Endogenous circadian clocks facilitate the adaptation of physiology and behavior to recurring environmental changes brought about by the Earth's rotation around its axis. Adipose tissues harbor intrinsic circadian oscillators based on interlocked transcriptional-translational feedback loops built from a set of clock genes that regulate important aspects of lipid metabolism and adipose endocrine function. These adipocyte clocks are reset via neuronal and endocrine pathways originating from a master circadian pacemaker residing in the hypothalamic suprachiasmatic nucleus. One important mediator of circadian output is the stress hormone cortisol, which, at the same time, is one of the major regulators of adipose physiology. In this review we summarize recent findings on the interaction between circadian and stress systems in the regulation of adipose physiology and discuss the implications of this crosstalk for the development of metabolic disorders associated with circadian disruption and/or chronic stress, for example in shift workers.


Subject(s)
Adipose Tissue/physiology , Circadian Clocks , Stress, Physiological , Animals , Humans , Hydrocortisone/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Metabolic Diseases/metabolism , Metabolic Diseases/physiopathology , Pituitary-Adrenal System/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...