Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(1): e0260579, 2022.
Article in English | MEDLINE | ID: mdl-35051184

ABSTRACT

With the advancement in machine learning, researchers continue to devise and implement effective intelligent methods for fraud detection in the financial sector. Indeed, credit card fraud leads to billions of dollars in losses for merchants every year. In this paper, a multi-classifier framework is designed to address the challenges of credit card fraud detections. An ensemble model with multiple machine learning classification algorithms is designed, in which the Behavior-Knowledge Space (BKS) is leveraged to combine the predictions from multiple classifiers. To ascertain the effectiveness of the developed ensemble model, publicly available data sets as well as real financial records are employed for performance evaluations. Through statistical tests, the results positively indicate the effectiveness of the developed model as compared with the commonly used majority voting method for combination of predictions from multiple classifiers in tackling noisy data classification as well as credit card fraud detection problems.


Subject(s)
Machine Learning
2.
Ann Oper Res ; : 1-23, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34121790

ABSTRACT

Payment cards offer a simple and convenient method for making purchases. Owing to the increase in the usage of payment cards, especially in online purchases, fraud cases are on the rise. The rise creates financial risk and uncertainty, as in the commercial sector, it incurs billions of losses each year. However, real transaction records that can facilitate the development of effective predictive models for fraud detection are difficult to obtain, mainly because of issues related to confidentially of customer information. In this paper, we apply a total of 13 statistical and machine learning models for payment card fraud detection using both publicly available and real transaction records. The results from both original features and aggregated features are analyzed and compared. A statistical hypothesis test is conducted to evaluate whether the aggregated features identified by a genetic algorithm can offer a better discriminative power, as compared with the original features, in fraud detection. The outcomes positively ascertain the effectiveness of using aggregated features for undertaking real-world payment card fraud detection problems.

3.
IEEE Trans Neural Netw Learn Syst ; 29(4): 1058-1068, 2018 04.
Article in English | MEDLINE | ID: mdl-28182559

ABSTRACT

Quantum-inspired computing is an emerging research area, which has significantly improved the capabilities of conventional algorithms. In general, quantum-inspired hopfield associative memory (QHAM) has demonstrated quantum information processing in neural structures. This has resulted in an exponential increase in storage capacity while explaining the extensive memory, and it has the potential to illustrate the dynamics of neurons in the human brain when viewed from quantum mechanics perspective although the application of QHAM is limited as an autoassociation. We introduce a quantum-inspired multidirectional associative memory (QMAM) with a one-shot learning model, and QMAM with a self-convergent iterative learning model (IQMAM) based on QHAM in this paper. The self-convergent iterative learning enables the network to progressively develop a resonance state, from inputs to outputs. The simulation experiments demonstrate the advantages of QMAM and IQMAM, especially the stability to recall reliability.

4.
IEEE Trans Neural Netw Learn Syst ; 27(10): 2035-46, 2016 10.
Article in English | MEDLINE | ID: mdl-26340787

ABSTRACT

An accurate and noninvasive stress assessment from human physiology is a strenuous task. In this paper, a pattern recognition system to learn complex correlates between heart rate variability (HRV) features and salivary stress biomarkers is proposed. Using the Trier social stress test, heart rate and salivary measurements were obtained from volunteers under varying levels of stress induction. Measurements of salivary alpha-amylase and cortisol were used as objective measures of stress, and were correlated with the HRV features using fuzzy ARTMAP (FAM). In improving the predictive ability of the ARTMAPs, techniques, such as genetic algorithms for parameter optimization and voting ensembles, were employed. The ensemble of FAMs can be used for predicting stress responses of salivary alpha-amylase or cortisol using heart rate measurements as the input. Using alpha-amylase as the stress indicator, the ensemble was able to classify stress from heart rate features with 75% accuracy, and 80% accuracy when cortisol was used.


Subject(s)
Biomarkers , Heart Rate , Neural Networks, Computer , Exercise Test , Humans , Hydrocortisone , Saliva
5.
IEEE Trans Neural Netw Learn Syst ; 27(12): 2760-2767, 2016 12.
Article in English | MEDLINE | ID: mdl-26672053

ABSTRACT

A hybrid intelligent model comprising a modified fuzzy min-max (FMM) clustering neural network and a modified clustering tree (CT) is developed. A review of clustering models with rule extraction capabilities is presented. The hybrid FMM-CT model is explained. We first use several benchmark problems to illustrate the cluster evolution patterns from the proposed modifications in FMM. Then, we employ a case study with real data related to power quality monitoring to assess the usefulness of FMM-CT. The results are compared with those from other clustering models. More importantly, we extract explanatory rules from FMM-CT to justify its predictions. The empirical findings indicate the usefulness of the proposed model in tackling data clustering and power quality monitoring problems under different environments.

6.
IEEE J Biomed Health Inform ; 20(3): 829-837, 2016 05.
Article in English | MEDLINE | ID: mdl-25781963

ABSTRACT

A medical case study related to implantable rotary blood pumps is examined. Five classifiers and two ensemble classifiers are applied to process the signals collected from the pumps for the identification of the aortic valve nonopening pump state. In addition to the noise-free datasets, up to 40% class noise has been added to the signals to evaluate the classification performance when mislabeling is present in the classifier training set. In order to ensure a reliable diagnostic model for the identification of the pump states, classifications performed with and without class noise are evaluated. The multilayer perceptron emerged as the best performing classifier for pump state detection due to its high accuracy as well as robustness against class noise.


Subject(s)
Heart-Assist Devices/classification , Signal Processing, Computer-Assisted , Animals , Dogs , Hemorheology , Models, Theoretical , Neural Networks, Computer
7.
IEEE Trans Neural Netw Learn Syst ; 25(4): 806-12, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24807956

ABSTRACT

In this brief, a hybrid model combining the fuzzy min-max (FMM) neural network and the classification and regression tree (CART) for online motor detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. To evaluate the applicability of the proposed FMM-CART model, an evaluation with a benchmark data set pertaining to electrical motor bearing faults is first conducted. The results obtained are equivalent to those reported in the literature. Then, a laboratory experiment for detecting and diagnosing eccentricity faults in an induction motor is performed. In addition to producing accurate results, useful rules in the form of a decision tree are extracted to provide explanation and justification for the predictions from FMM-CART. The experimental outcome positively shows the potential of FMM-CART in undertaking online motor fault detection and diagnosis tasks.

8.
IEEE Trans Neural Netw Learn Syst ; 23(1): 97-108, 2012 Jan.
Article in English | MEDLINE | ID: mdl-24808459

ABSTRACT

In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.

SELECTION OF CITATIONS
SEARCH DETAIL
...