Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 40(11): 1954-1959, 2019 11.
Article in English | MEDLINE | ID: mdl-31624121

ABSTRACT

BACKGROUND AND PURPOSE: MR imaging is not routinely used to image the extracranial facial nerve. The purpose of this study was to determine the extent to which this nerve can be visualized with a CISS sequence and to determine the feasibility of using that sequence for locating the nerve relative to tumor. MATERIALS AND METHODS: Thirty-two facial nerves in 16 healthy subjects and 4 facial nerves in 4 subjects with parotid gland tumors were imaged with an axial CISS sequence protocol that included 0.8-mm isotropic voxels on a 3T MR imaging system with a 64-channel head/neck coil. Four observers independently segmented the 32 healthy subject nerves. Segmentations were compared by calculating average Hausdorff distance values and Dice similarity coefficients. RESULTS: The primary bifurcation of the extracranial facial nerve into the superior temporofacial and inferior cervicofacial trunks was visible on all 128 segmentations. The mean of the average Hausdorff distances was 1.2 mm (range, 0.3-4.6 mm). Dice coefficients ranged from 0.40 to 0.82. The relative position of the facial nerve to the tumor could be inferred in all 4 tumor cases. CONCLUSIONS: The facial nerve can be seen on CISS images from the stylomastoid foramen to the temporofacial and cervicofacial trunks, proximal to the parotid plexus. Use of a CISS protocol is feasible in the clinical setting to determine the location of the facial nerve relative to tumor.


Subject(s)
Facial Nerve/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Adult , Female , Humans , Male , Middle Aged , Young Adult
2.
AJNR Am J Neuroradiol ; 39(10): 1903-1906, 2018 10.
Article in English | MEDLINE | ID: mdl-30139756

ABSTRACT

The pointwise encoding time reduction with radial acquisition (PETRA) ultrashort echo time MR imaging sequence at 3T enables visualization of the facial nerve from the brain stem, through the temporal bone, to the stylomastoid foramen without intravenous contrast. Use of the PETRA sequence, or other ultrashort echo time sequences, should be considered in the MR imaging evaluation of certain skull base tumors and perhaps other facial nerve and temporal bone pathologies.


Subject(s)
Facial Nerve/diagnostic imaging , Magnetic Resonance Imaging/methods , Temporal Bone/diagnostic imaging , Adult , Female , Humans , Male , Prospective Studies , Sensitivity and Specificity
3.
J Cardiovasc Magn Reson ; 3(3): 247-56, 2001.
Article in English | MEDLINE | ID: mdl-11816621

ABSTRACT

Magnetic resonance first-pass (MRFP) imaging awaits longitudinal clinical trials for quantification of myocardial perfusion. The purpose of this study was to assess inter- and intraobserver agreement of this method. Seventeen MRFP studies (14 rest and 3 under adenosine-induced hyperemia) from 14 patients were acquired. Two observers visually graded study quality. Each study was subdivided into eight regions. Both observers analyzed all 17 studies (8 x 17 = 136 regions) for interobserver agreement. Each observer then analyzed 10 of the 17 studies a second time (2 x 8 x 10 = 160 regions) for intraobserver agreement. Signal intensity curves were obtained with Argus software (Siemens, Iselin, NJ). The maximum amplitude of the impulse response function (Rmax) and the change of signal intensity (deltaSImax) of the contrast bolus were determined. Intraclass correlation coefficient was used to determine intra- and interobserver agreement. The quality was good or excellent in 14 studies. Intraobserver agreement of Rmax and deltaSImax were good (0.85 and 0.80, n = 160). Interobserver agreement of Rmax was fair (0.55, n = 136) but improved after exclusion of poor-quality studies (0.88, n = 112). Interobserver agreement of deltaSImax was good (0.73) and improved less than Rmax with study quality (0.83). Interobserver agreement for Rmax in individual myocardial regions before and after exclusion of studies with poor quality changed most markedly in lateral and posterior regions (0.69 and 0.65 vs. 0.97 and 0.94), where signal-to-noise ratios were reduced compared with anteroseptal regions (p < 0.01). Analysis of MRFP images provides good intraobserver agreement. Interobserver agreement of the quantitative perfusion analysis is good under the premise of good image quality.


Subject(s)
Coronary Disease/diagnosis , Magnetic Resonance Imaging/methods , Observer Variation , Adult , Aged , Analysis of Variance , Coronary Circulation , Female , Humans , Hyperemia/chemically induced , Image Processing, Computer-Assisted , Male , Middle Aged , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...