Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Basic Clin Physiol Pharmacol ; 35(1-2): 79-84, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38468505

ABSTRACT

OBJECTIVE: The objective of our study was to assess the impact of heat stress on hydration and cognition among outdoor workers in hot environment. METHODS: Area heat stress assessments were measured using Quest Temp WBGT monitor. Sweat rate for dehydration and reaction time for acute cognitive processing were recorded using standard procedures. RESULTS: Heat stress measurements ranged from 23.8 °C - 42 °C. More than 50 % of the workers had high sweat rate (>1.2 L/h) when exposed to high environmental temperatures. Positive correlation was obtained between WBGT, sweat rate and reaction time which indicates that hyperthermia has an impact on neural network processing. Heart rate and reaction time also increased with rise in WBGT and heavy physical activity. CONCLUSIONS: There was impairment of cognitive functions (reaction time) under heat stress conditions. Hence, reaction time can be used to assess the short-term impact of heat stress on neural modulation and will help to plan effective intervention strategies to reduce morbidity and mortality among workers.


Subject(s)
Heat Stress Disorders , Occupational Exposure , Humans , Hot Temperature , Occupational Exposure/adverse effects , Temperature , Heat-Shock Response , India
2.
BMC Cancer ; 23(1): 1035, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37884893

ABSTRACT

BACKGROUND: Myelodysplastic Neoplasms (MDS) are clonal stem cell disorders characterized by ineffective hematopoiesis and progression to acute myeloid leukemia, myelodysplasia-related (AML-MR). A major mechanism of pathogenesis of MDS is the aberration of the epigenetic landscape of the hematopoietic stem cells and/or progenitor cells, especially DNA cytosine methylation, and demethylation. Data on TET2, the predominant DNA demethylator of the hematopoietic system, is limited, particularly in the MDS patients from India, whose biology may differ since these patients present at a relatively younger age. We studied the expression and the variants of TET2 in Indian MDS and AML-MR patients and their effects on 5-hydroxymethyl cytosine (5-hmC, a product of TET2 catalysis) and on the prognosis of MDS patients. RESULTS: Of the 42 MDS patients, cytogenetics was available for 31 sub-categorized according to the Revised International Prognostic Scoring System (IPSS-R). Their age resembled that of the previous studies from India. Bone marrow nucleated cells (BMNCs) were also obtained from 13 patients with AML-MR, 26 patients with de-novo AML, and 11 subjects with morphologically normal bone marrow. The patients had a significantly lower TET2 expression which was more pronounced in AML-MR and the IPSS-R higher-risk MDS categories. The 5-hmC levels in higher-risk MDS and AML-MR correlated with TET2 expression, suggesting a possible mechanistic role in the loss of TET2 expression. The findings on TET2 and 5-hmC were also confirmed at the tissue level using immunohistochemistry. Pathogenic variants of TET2 were found in 7 of 24 patient samples (29%), spanning across the IPSS-R prognostic categories. One of the variants - H1778R - was found to affect local and global TET2 structure when studied using structural predictions and molecular dynamics simulations. Thus, it is plausible that some pathogenic variants in TET2 can compromise the structure of TET2 and hence in the formation of 5-hmC. CONCLUSIONS: IPSS-R higher-risk MDS categories and AML-MR showed a reduction in TET2 expression, which was not apparent in lower-risk MDS. DNA 5-hmC levels followed a similar pattern. Overall, a decreased TET2 expression and a low DNA 5-hmC level are predictors of advanced disease and adverse outcome in MDS in the population studied, i.e., MDS patients from India.


Subject(s)
Dioxygenases , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , Myelodysplastic Syndromes/genetics , Bone Marrow/pathology , Prognosis , Leukemia, Myeloid, Acute/pathology , Cytosine , DNA-Binding Proteins/genetics
3.
Front Cardiovasc Med ; 9: 939013, 2022.
Article in English | MEDLINE | ID: mdl-36304539

ABSTRACT

The vascular subtype of Ehlers Danlos Syndrome (vEDS) is a rare connective tissue disorder characterized by spontaneous arterial, bowel or organ rupture. The diagnosis of vEDS is established in a proband by identification of a heterozygous pathogenic variant in the alpha-1 gene of type III collagen (COL3A1) by molecular analysis. In this report, we present a case of vEDS with life threatening, spontaneous arterial dissections in association with an uncharacterized rare variant of COL3A1, exon19:c.1340G > A. Primary culture of patient skin fibroblasts followed by immunofluorescence revealed a complete absence of COL3A1 protein expression as well as altered morphology. Electron microscopy of the cultured fibroblasts showed abnormal vacuoles in the cytoplasm suggestive of a secretory defect. In this study, we have performed functional characterization of the COL3A1 exon19:c.1340G > A variant for the first time and this may now be classified as likely pathogenic in vEDS. *Both JM and LRL contributed equally in the manuscript and should both be considered as the first author.

4.
Leuk Lymphoma ; 63(14): 3426-3432, 2022 12.
Article in English | MEDLINE | ID: mdl-36165590

ABSTRACT

While considerable information exists on the ten-eleven translocation 2 (TET2) mutational landscape in AML, the information on TET2 expression is limiting. So, we aimed to study the TET2 expression at mRNA and protein levels in AML patients compared to healthy controls. To achieve this, we recruited 70 non-M3, de novo AML patients and 20 healthy controls. The expression of TET2 was checked at mRNA and protein levels by qPCR and ELISA respectively and the TET activity was checked by the 5-hmC assay. TET2 mRNA expression was correlated with clinicopathological parameters and overall survival. We found a significant downregulation of TET2 mRNA and protein and significantly lower DNA 5-hmC levels in AML patients compared to controls. TET2 downregulation was more in patients with high blast counts and patients of the adverse-risk ELN category. We also found a significant upregulation of DNMT1 and DNMT3a suggesting a hypermethylation phenotype in de novo AML.


Subject(s)
Dioxygenases , Leukemia, Myeloid, Acute , Humans , Translocation, Genetic , Mutation , Genomics , Leukemia, Myeloid, Acute/genetics , RNA, Messenger/genetics , DNA-Binding Proteins/genetics , Dioxygenases/genetics
5.
J Cancer Res Ther ; 17(4): 834-844, 2021.
Article in English | MEDLINE | ID: mdl-34528529

ABSTRACT

Immunotherapy is a treatment that uses specific components of a person's immune system to fight diseases. This is usually done by stimulating or assisting one's immune system is attacking the offending agent - for instance, in the case of cancer - the target of immunotherapy will be cancer cells. Some types of immunotherapy are also called biologic therapy or biotherapy. One of the fundamental challenges that a living cell encounters are to accurately copy its genetic material to daughter cells during every single cell cycle. When this process goes haywire, genomic instability ensues, and genetic alterations ranging from nucleotide changes to chromosomal translocations and aneuploidy occur. Genomic instability arising out of DNA structural changes (indels, rearrangements, etc.,) can give rise to mutations predisposing to cancer. Cancer prevention refers to actions taken to mitigate the risk of getting cancer. The past decade has encountered an explosive rate of development of anticancer therapy ranging from standard chemotherapy to novel targeted small molecules that are nearly cancer specific, thereby reducing collateral damage. However, a new class of emerging therapy aims to train the body's defense system to fight against cancer. Termed as "cancer immunotherapy" is the new approach that has gained worldwide acceptance. It includes using antibodies that bind to and inhibit the function of proteins expressed by cancer cells or engineering and boosting the person's own T lymphocytes to target cancer. In this review, we summarized the recent advances and developments in cancer immunotherapy along with their shortcoming and challenges.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Neoplasms/drug therapy , T-Lymphocytes/immunology , Animals , Humans , Neoplasms/immunology
6.
Appl Biochem Biotechnol ; 193(6): 1701-1726, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33694104

ABSTRACT

Cytosine methylation is a well-explored epigenetic modification mediated by DNA methyltransferases (DNMTs) which are considered "methylation writers"; cytosine methylation is a reversible process. The process of removal of methyl groups from DNA remained unelucidated until the discovery of ten-eleven translocation (TET) proteins which are now considered "methylation editors." TET proteins are a family of Fe(II) and alpha-ketoglutarate-dependent 5-methyl cytosine dioxygenases-they convert 5-methyl cytosine to 5-hydroxymethyl cytosine, and to further oxidized derivatives. In humans, there are three TET paralogs with tissue-specific expression, namely TET1, TET2, and TET3. Among the TETs, TET2 is highly expressed in hematopoietic stem cells where it plays a pleiotropic role. The paralogs also differ in their structure and DNA binding. TET2 lacks the CXXC domain which mediates DNA binding in the other paralogs; thus, TET2 requires interactions with other proteins containing DNA-binding domains for effectively binding to DNA to bring about the catalysis. In addition to its role as methylation editor of DNA, TET2 also serves as methylation editor of RNA. Thus, TET2 is involved in epigenetics as well as epitranscriptomics. TET2 mutations have been found in various malignant hematological disorders like acute myeloid leukemia, and non-malignant hematological disorders like myelodysplastic syndromes. Increasing evidence shows that TET2 plays an important role in the non-hematopoietic system as well. Hepatocellular carcinoma, gastric cancer, prostate cancer, and melanoma are some non-hematological malignancies in which a role of TET2 has been implicated. Loss of TET2 is also associated with atherosclerotic vascular lesions and endometriosis. The current review elaborates on the role of structure, catalysis, physiological functions, pathological alterations, and methods to study TET2, with specific emphasis on epigenomics and epitranscriptomics.


Subject(s)
5-Methylcytosine/analogs & derivatives , 5-Methylcytosine/metabolism , DNA Methylation , Dioxygenases/metabolism , Epigenesis, Genetic , Animals , Dioxygenases/genetics , Humans
7.
Appl Biochem Biotechnol ; 193(6): 1780-1799, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33492552

ABSTRACT

Dysbiosis of the gut microbiome has been associated with the development of colorectal cancer (CRC). Gut microbiota is involved in the metabolic transformations of dietary components into oncometabolites and tumor-suppressive metabolites that in turn affect CRC development. In a healthy colon, the major of microbial metabolism is saccharolytic fermentation pathways. The alpha-bug hypothesis suggested that oncogenic bacteria such as enterotoxigenic Bacteroides fragilis (ETBF) induce the development of CRC through direct interactions with colonic epithelial cells and alterations of microbiota composition at the colorectal site. Escherichia coli, E. faecalis, F. nucleatum, and Streptococcus gallolyticus showed higher abundance whereas Bifidobacterium, Clostridium, Faecalibacterium, and Roseburia showed reduced abundance in CRC patients. The alterations of gut microbiota may be used as potential therapeutic approaches to prevent or treat CRC. Probiotics such as Lactobacillus and Bifidobacterium inhibit the growth of CRC through inhibiting inflammation and angiogenesis and enhancing the function of the intestinal barrier through the secretion of short-chain fatty acids (SCFAs). Crosstalk between lifestyle, host genetics, and gut microbiota is well documented in the prevention and treatment of CRC. Future studies are required to understand the interaction between gut microbiota and host to the influence and prevention of CRC. However, a better understanding of bacterial dysbiosis in the heterogeneity of CRC tumors should also be considered. Metatranscriptomic and metaproteomic studies are considered a powerful omic tool to understand the anti-cancer properties of certain bacterial strains. The clinical benefits of probiotics in the CRC context remain to be determined. Metagenomic approaches along with metabolomics and immunology will open a new avenue for the treatment of CRC shortly. Dietary interventions may be suitable to modulate the growth of beneficial microbiota in the gut.


Subject(s)
Bacteria/metabolism , Colonic Neoplasms , Gastrointestinal Microbiome , Neovascularization, Pathologic , Animals , Colonic Neoplasms/blood supply , Colonic Neoplasms/microbiology , Colonic Neoplasms/therapy , Humans , Neovascularization, Pathologic/microbiology , Neovascularization, Pathologic/therapy
8.
Placenta ; 103: 141-151, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33126048

ABSTRACT

BACKGROUND: Though a large number of pregnant females have been affected by COVID-19, there is a dearth of information on the effects of SARS-CoV-2 infection on trophoblast function. We explored in silico, the potential interactions between SARS-CoV-2 proteins and proteins involved in the key functions of placenta. METHODS: Human proteins interacting with SARS-CoV-2 proteins were identified by Gordon et al. (2020). Genes that are upregulated in trophoblast sub-types and stages were obtained by gene-expression data from NCBI-GEO and by text-mining. Genes altered in pathological states like pre-eclampsia and gestational diabetes mellitus were also identified. Genes crucial in placental functions thus identified were compared to the SARS-CoV-2 interactome for overlaps. Proteins recurring across multiple study scenarios were analyzed using text mining and network analysis for their biological functions. RESULTS: The entry receptors for SARS-CoV-2 - ACE2 and TMPRSS2 are expressed in placenta. Other proteins that interact with SARS-CoV-2 like LOX, Fibulins-2 and 5, NUP98, GDF15, RBX1, CUL3, HMOX1, PLAT, MFGE8, and MRPs are vital in placental functions like trophoblast invasion and migration, syncytium formation, differentiation, and implantation. TLE3, expressed across first trimester placental tissues and cell lines, is involved in formation of placental vasculature, and is important in SARS-CoV (2003) budding and exit from the cells by COPI vesicles. CONCLUSION: SARS-CoV-2 can potentially interact with proteins having crucial roles in the placental function. Whether these potential interactions identified in silico have effects on trophoblast functions in biological settings needs to be addressed by further in vitro and clinical studies.


Subject(s)
Computational Biology , Pregnancy Proteins/metabolism , Protein Interaction Maps , SARS-CoV-2/metabolism , Trophoblasts/physiology , COVID-19/metabolism , COVID-19/pathology , Computer Simulation , Datasets as Topic , Female , HEK293 Cells , Humans , Placenta/metabolism , Placenta/physiology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/metabolism , Pregnancy Complications, Infectious/pathology , Pregnancy Trimester, First/metabolism , Protein Binding , Proteomics/methods , Trophoblasts/metabolism , Trophoblasts/virology , Up-Regulation
9.
BMC Res Notes ; 12(1): 825, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31878964

ABSTRACT

OBJECTIVE: Pabda (Ompok bimaculatus) is a freshwater catfish, largely available in Asian countries, especially in Bangladesh, India, Pakistan and Nepal. This fish is highly valued for its fabulous taste and high nutritional value and is very popular as a rich source of proteins, omega-3 and omega-6 fatty acids, vitamins and mineral for growing children, pregnant females and elders. We performed de-novo sequencing of Ompok bimaculatus using a hybrid approach and present here a draft assembly for this species for the first time. DATA DESCRIPTION: The genome of Ompok bimaculatus (Fig. 1: Table 1, Data file 3) from Ganges river, has been sequenced by hybrid approach using Illumina short reads and PacBio long reads followed by structural annotations. The draft genome assembly was found to be 718 Mb with N50 size of 81 kb. MAKER gene annotation tool predicted 21,371 genes.


Subject(s)
Catfishes/genetics , Genome , Animals , Fresh Water , High-Throughput Nucleotide Sequencing , India , Molecular Sequence Annotation , Whole Genome Sequencing
10.
Gigascience ; 8(5)2019 05 01.
Article in English | MEDLINE | ID: mdl-31077316

ABSTRACT

BACKGROUND: The Indian peafowl (Pavo cristanus) is native to South Asia and is the national bird of India. Here we present a draft genome sequence of the male blue peacock using Illumina and Oxford Nanopore technology (ONT). RESULTS: ONT sequencing gave ∼2.3-fold sequencing coverage, whereas Illumina generated 150-base pair paired-end sequence data at 284.6-fold coverage from 5 libraries. Subsequently, we generated a 0.915-gigabase pair de novo assembly of the peacock genome with a scaffold N50 of 0.23 megabase pairs (Mb). We predict that the peacock genome contains 23,153 protein-coding genes and 75.3 Mb (7.33%) of repetitive sequences. CONCLUSIONS: We report a high-quality assembly of the peacock genome using a hybrid approach of sequences generated by both Illumina and ONT. The long-read chemistry generated by ONT was useful for addressing challenges related to de novo assembly, particularly at regions containing repetitive sequences spanning longer than the read length, and which could not be resolved with only short-read-based assembly. Contig assembly of Illumina short reads gave an N50 of 1,639 bases, whereas with ONT, the N50 increased by >9-fold to 14,749 bases. The initial contig assembly based on Illumina sequencing reads alone gave 685,241 contigs. Further scaffolding on assembled contigs using both Illumina and ONT sequencing reads resulted in a final assembly of 15,025 super-scaffolds, with an N50 of ∼0.23 Mb. Ninety-five percent of proteins predicted by homology matched with those in a public repository, verifying the completeness of our assembly. Like other phylogenetic studies of avian conserved genes, we found P. cristatus to be most closely related to Gallus gallus, followed by Meleagris gallopavo and Anas platyrhynchos. Compared with the recently published peacock genome assembly, the current, superior, hybrid assembly has greater sequencing depth, fewer non-ATGC sequences, and fewer scaffolds.


Subject(s)
Galliformes/genetics , Genome , Molecular Sequence Annotation , Animals , Avian Proteins/genetics , Galliformes/classification , Nanopore Sequencing , Phylogeny , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...