Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 32(34): e2001868, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32686270

ABSTRACT

Nanocrystals (NCs) of CsPbX3 , X = Cl, Br, or I, have excellent photoluminescent properties: high quantum yield, tunable emission wavelengths (410-700 nm), and narrow emission band widths. CsPbBr3 NCs show high promise as a green-emitting material for use in wide color gamut displays. CsPbBr3 NCs have, however, not been commercialized because they are sensitive to moisture and heat. To avoid these problems, this work attempts to introduce CsPbBr3 into five zeolites. The zeolite X product, Pb,Br,H,Cs,Na-X, shows superior stability toward moisture, maintaining its initial luminescence properties after being under water for more than a month. Its structure, determined using single-crystal X-ray crystallography, shows that quantum dots (QDs) of [Na4 Cs6 PbBr4 ]8+ (not of CsPbBr3 ) have formed. They are tetrahedral PbBr4 2- ions (Pb-Br = 3.091(11) Å) surrounded by Na+ and Cs+ ions. Each fills the zeolite's supercage with its Pb2+ ion precisely at the center, a position of high symmetry. The peaks in the emission spectra of Pb,Br,H,Cs,Na-X and the CsPbBr3 NCs are both at about 520 nm. The FWHM of Pb,Br,H,Cs,Na-X, however, is narrower than any previously reported for any of the CsPbBr3 NCs, and for zeolite Y and the various mesoporous materials treated with CsPbBr3 .

2.
J Phys Chem B ; 110(51): 25964-74, 2006 Dec 28.
Article in English | MEDLINE | ID: mdl-17181246

ABSTRACT

The crystal structure and thermal stability of two cadmium sulfide nanoclusters prepared in zeolite A (LTA) have been studied by XPS, TGA, and single-crystal and powder XRD. The crystal structures of Cd2.4Na3.2(Cd6S4)0.4(Cd2Na2S)0.6(H2O)> or =5.8[Si12Al12O48]-LTA (a = 12.2919(7) A, crystal 1 (hydrated)) and /Cd4Na2(Cd2O)(Na2O)/[Si12Al12O48]-LTA (a = 12.2617(4) A, crystal 2 (dehydrated)) were determined by single-crystal methods in the cubic space group Pm3m at 294(1) K. Crystal 1 was prepared by ion exchange of Na12-LTA in an aqueous stream 0.05 M in Cd2+, followed by washing in a stream of water, followed by reaction in an aqueous stream 0.05 M in Na2S. Crystal 2 was made by dehydrating crystal 1 at 623 K and 1 x 10(-6) Torr for 3 days. In crystal 1, Cd6S4(4+) nanoclusters were found in and extending out of about 40% of the sodalite cavities. Central to each Cd6S4(4+) cluster is a Cd4S4 unit (interpenetrating Cd2+ and S2- tetrahedra with near Td symmetry, Cd-S = 2.997(24) A, Cd-S-Cd = 113.8(12) degrees, and S-Cd-S = 58.1(24) degrees). Each of the two remaining Cd2+ ions bonds radially through a 6-ring of the zeolite framework to a sulfide ion of this Cd4S4 unit (Cd-S = 2.90(8) A). In each of the remaining 60% of the sodalite cavities of crystal 1, a planar Cd2Na2S4+ cluster was found (Cd-S/Na-S = 2.35(5)/2.56(14) A and Cd-S-Cd/Na-S-Na = 122(5)/92(7) degrees). Cd6S4(4+) and Cd2Na2S4+ are stable within the zeolite up to about 700 K in air. Upon vacuum dehydration at 623 K, all sulfur was lost (crystal 2). Instead as anions, only two oxide ions remain per sodalite unit. One bridges between two Cd2+ ions (Cd2O2+, Cd-O = 2.28(3) A) and the other between two Na+ ions (Na2O, Na-O = 2.21(10) A).

4.
J Phys Chem B ; 109(43): 20137-44, 2005 Nov 03.
Article in English | MEDLINE | ID: mdl-16853603

ABSTRACT

The crystal structure of an ethylene sorption complex of fully vacuum-dehydrated fully Ag(+)-exchanged zeolite X (FAU), a = 24.865(2) A, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd at 21 degrees C. It is very different from the ethylene complex of Ag(92)-X that had been dehydrated at 400 degrees C in flowing oxygen, as were the two dehydrated structures. The crystal was prepared by ion exchange in a flowing stream of aqueous 0.05 M AgNO(3) for 3 days, followed by dehydration at 400 degrees C and 2 x 10(-6) Torr for 2 days, followed by exposure to 300 Torr of zeolitically dry ethylene gas for 2 h at 21 degrees C. The structure was determined in this atmosphere and was refined using all data to the final error indices (based upon the 534 reflections for which F(o) > 4sigma(F(o))) R(1) = 0.062 and wR(2) = 0.135. In this structure, per unit cell, 14 Ag(+) ions were found at the octahedral site I (Ag-O = 2.611(9) A), and 32 partially reduced Ag(+) ions fill two different site I' positions deep in the sodalite cavities (Ag-O = 2.601(13) and 2.618(12) A). The sodalite cavities host two different cationic silver clusters. In about 47% of sodalite units, eight silver atoms form interpenetrating tetrahedra, Ag(8)(n+) (n = 4 is suggested), with T(d)() symmetry. The other 53% of the sodalite units host cyclo-Ag(4)(m+) (m = 2 is suggested) cations with near S(4) symmetry. These clusters are very similar to those in vacuum-dehydrated Ag(92)-X. Thirty-two Ag(+) ions fill the single 6-rings, 15 at site II' (Ag-O = 2.492(10) A), and 17 at site II (Ag-O = 2.460(9) A). The latter 17 lie in supercages where each forms a lateral pi-complex with an ethylene molecule. In turn, each C(2)H(4) molecule forms two cis electrostatic hydrogen bonds to framework oxygens. The remaining 14 Ag+ ions occupy three different II' sites. Vacuum dehydration had caused substantial decomposition: per unit cell, 30 of the 92 Ag(+) ions were reduced and 15 of the 384 framework oxide ions were oxidized to O2(g), leaving lattice vacancies. The sorption of C(2)H(4) at 21 degrees C reoxidized about 7 of the 30 Ag(0) atoms to Ag(+) and reduced 1.75 ethylene molecules to give CH(2)(2-) groups which refilled 3.5 of these 15 lattice vacancies. The remaining vacancies may have been filled with H(2)C=C(2-) ions. The unit cell formula, which originally contained 384 oxygen atoms, may be |Ag(92)(C2H4)17|[Si(100)Al(92)O(369)(CH2)3.5] or |Ag(92)H(23)(C2H4)17|[Si(100)Al(92)O(369)(CH2)3.5(C2H2)11.5].


Subject(s)
Ethylenes/chemistry , Silver/chemistry , Zeolites/chemistry , Adsorption , Crystallography, X-Ray , Oxidation-Reduction , Oxides/chemistry , Thermodynamics , X-Ray Diffraction
5.
J Phys Chem B ; 109(11): 4900-8, 2005 Mar 24.
Article in English | MEDLINE | ID: mdl-16863145

ABSTRACT

The structures of the nitric oxide and dinitrogen tetroxide sorption complexes of dehydrated fully Cd2+-exchanged zeolite X (FAU) have been determined using single-crystal X-ray diffraction in the cubic space group Fdm at 21(1) degrees C. Ion exchange was accomplished by allowing an aqueous stream 0.05 M in Cd2+ to flow past each crystal for 5 days. Each crystal was then dehydrated at 500 degrees C and 2 x 10(-6) Torr for 2 days, followed by exposure to 100 Torr of zeolitically dry NO or NO2/N2O4 gas. The structures were determined in these atmospheres. The unit cell constants at 21(1) degrees C are 24.877(2) A for the dark-yellow NO complex, |Cd46(NO)16|[Si100Al92O384]-FAU, and 24.735(2) A for the black N2O4 complex, |Cd46(N2O4)25.5|[Si100Al92O384]-FAU. The structure of the NO complex was refined to R1 = 0.072 and wR2 = 0.134. In this structure, Cd2+ ions occupy four crystallographic sites. Fifteen Cd2+ ions occupy site I (at the centers of the double 6-rings (D6Rs)), and one occupies site I' (in the sodalite cavity opposite a D6R). The remaining 30 Cd2+ ions occupy two different sites II (near 6-rings in the supercages): 16 coordinate to nitric oxide molecules and 14 do not. Sixteen NO molecules lie in the supercage where each interacts weakly with a Cd2+ ion: Cd-N = 2.57(22) A. The observed N-O bond distance is 1.28(25) A and Cd-N-O is 118(10) degrees. The structure of the N2O4 complex was refined to R1 = 0.084 and wR2 = 0.216. In this structure, Cd2+ ions occupy only three crystallographic sites. The 16 D6Rs per unit cell are filled with 11.5 Cd2+ ions at site I and 9 Cd2+ ions at site I': 11.5 + 9/2 = 16. The remaining 25.5 Cd2+ ions occupy site II where each coordinates at 2.43(8) A to a nitrogen atom of a N2O4 molecule. At the coordinating nitrogen atom, O-N-O is 147(10) degrees and the N-O bond lengths are 1.07(9) and 1.23(10) A. At the second nitrogen atom, O-N-O is 140(10) degrees, and the N-O bond lengths are 1.03(13) and 1.42(12) A. The imprecisely determined N-N bond length, 2.74(17) A, appears to be very much lengthened by coordination to Cd2+. The Cd-N-N angle is 144(10) degrees. This appears to be the first crystallographic report of the coordination of N2O4 to a cation.

6.
Langmuir ; 20(21): 9354-9, 2004 Oct 12.
Article in English | MEDLINE | ID: mdl-15461529

ABSTRACT

The structure of a methylamine sorption complex of fully dehydrated fully Ca2+-exchanged zeolite X, |Ca46(CH3NH2)16|[Si100Al92O384]-FAU, has been determined in the cubic space group Fd3 at 21(1) degrees C (a = 24.994(4) angstroms) by single-crystal X-ray diffraction techniques. The crystal was prepared by ion exchange in a flowing stream of 0.05 M aqueous Ca(NO3)2 for 3 days, followed by dehydration at 480 degrees C and 2 x 10(-6) Torr for 2 days, and exposure to 160 Torr of zeolitically dry methylamine gas at 21(1) degrees C. The structure was determined in this atmosphere and was refined, using the 739 reflections for which I > 0, to the final error indices R1 = 0.152 and R2 = 0.061. In this structure, Ca2+ ions occupy three crystallographic sites. Sixteen Ca2+ ions fill the octahedral site at the centers of hexagonal prisms (Ca-O = 2.429(7) angstroms). The remaining 30 Ca2+ ions are found at two nonequivalent sites II (in the supercages) with occupancies of 14 and 16 ions. Each of these Ca2+ ions coordinates to three framework oxygens, either at 2.296(7) or 2.334(7) angstroms, respectively. Sixteen methylamine molecules have been sorbed per unit cell, two per supercage. Each coordinates to one of the latter 16 site-II Ca2+ ions: N-Ca = 2.30(9) angstroms. The imprecisely determined N-C bond length, 1.48(23) angstroms, differs insignificantly from that in methylamine(g), 1.474(5) angstroms. The positions of the hydrogen atoms were calculated. One of the amino hydrogen atoms hydrogen bonds to a 6-ring oxygen, and the other forms a bifurcated hydrogen bond to two other 6-ring oxygens. The methyl group does not hydrogen bond to anything.


Subject(s)
Calcium/chemistry , Methylamines/chemistry , Organometallic Compounds/chemistry , Zeolites/chemistry , Adsorption , Aluminum/chemistry , Crystallization , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Oxygen/chemistry , Silicon/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...