Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(20)2024 May 28.
Article in English | MEDLINE | ID: mdl-38775241

ABSTRACT

The precise determination of surface transport coefficients at liquid interfaces is critical to an array of processes, ranging from atmospheric chemistry to catalysis. Building on our prior results that highlighted the emergence of a greatly reduced surface viscosity in simple liquids via the dispersion relation of surface excitations [Malgaretti et al., J. Chem. Phys. 158, 114705 (2023)], this work introduces a different approach to directly measure surface viscosity. We use modified Green-Kubo relations suitable for inhomogeneous systems to accurately quantify viscosity contributions from fluid slabs of variable thickness through extensive molecular dynamics simulations. This approach distinguishes the viscosity effects of the surface layer vs the bulk, offering an independent measure of surface viscosity and providing a more detailed understanding of interfacial dynamics and its transport coefficients.

2.
J Chem Phys ; 160(20)2024 May 28.
Article in English | MEDLINE | ID: mdl-38785286

ABSTRACT

Hydrogen-bond networks in associating fluids can be extremely robust and characterize the topological properties of the liquid phase, as in the case of water, over its whole domain of stability and beyond. Here, we report on molecular dynamics simulations of hydrogen fluoride (HF), one of the strongest hydrogen-bonding molecules. HF has more limited connectivity than water but can still create long, dynamic chains, setting it apart from most other small molecular liquids. Our simulation results provide robust evidence of a second-order percolation transition of HF's hydrogen bond network occurring below the critical point. This behavior is remarkable as it underlines the presence of two different cohesive mechanisms in liquid HF, one at low temperatures characterized by a spanning network of long, entangled hydrogen-bonded polymers, as opposed to short oligomers bound by the dispersion interaction above the percolation threshold. This second-order phase transition underlines the presence of marked structural heterogeneity in the fluid, which we found in the form of two liquid populations with distinct local densities.

3.
Eur Phys J E Soft Matter ; 46(9): 80, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37695466

ABSTRACT

 The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, introduced more than 70 years ago, is a hallmark of colloidal particle modeling. For highly charged particles in the dilute regime, it is often supplemented by Alexander's prescription (Alexander et al. in J Chem Phys 80:5776, 1984) for using a renormalized charge. Here, we solve the problem of the interaction between two charged colloids at finite ionic strength, including dielectric mismatch effects, using an efficient numerical scheme to solve the nonlinear Poisson-Boltzmann (NPB) equation with unknown boundary conditions. Our results perfectly match the analytical predictions for the renormalized charge by Trizac and coworkers (Aubouy et al. in J Phys A 36:5835, 2003). Moreover, they allow us to reinterpret previous molecular dynamics (MD) simulation results by Kreer et al. (Phys Rev E 74:021401, 2006), rendering them now in agreement with the expected behavior. We furthermore find that the influence of polarization becomes important only when the Debye layers overlap significantly.

4.
Soft Matter ; 19(21): 3773-3782, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37098698

ABSTRACT

Investigating the structure of fluid interfaces at high temperatures is a particularly delicate task that requires effective ways of discriminating liquid from vapour and identifying the location of the liquid phase boundary, thereby allowing to distinguish intrinsic from capillary fluctuations. Several numerical approaches require introducing a coarse-graining length scale, often heuristically chosen to be the molecular size, to determine the location of the liquid phase boundary. Here, we propose an alternative rationale for choosing this coarse-graining length scale; we require the average position of the local liquid phase dividing surface to match its flat, macroscopic counterpart. We show that this approach provides additional insight into the structure of the liquid/vapour interface, suggesting the presence of another length scale beyond the bulk correlation one that plays an important role in determining the interface structure.

5.
J Chem Phys ; 158(11): 114705, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36948818

ABSTRACT

The response of Newtonian liquids to small perturbations is usually considered to be fully described by homogeneous transport coefficients like shear and dilatational viscosity. However, the presence of strong density gradients at the liquid/vapor boundary of fluids hints at the possible existence of an inhomogeneous viscosity. Here, we show that a surface viscosity emerges from the collective dynamics of interfacial layers in molecular simulations of simple liquids. We estimate the surface viscosity to be 8-16 times smaller than that of the bulk fluid at the thermodynamic point considered. This result can have important implications for reactions at liquid surfaces in atmospheric chemistry and catalysis.

6.
J Chem Phys ; 158(5): 054503, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36754827

ABSTRACT

We investigate the properties of water along the liquid/vapor coexistence line in the supercooled regime down to the no-man's land. Extensive molecular dynamics simulations of the TIP4P/2005 liquid/vapor interface in the range 198-348 K allow us to locate the second surface tension inflection point with a high accuracy at 283 ± 5 K, close to the temperature of maximum density. This temperature also coincides with the appearance of a density anomaly at the interface known as the apophysis. We relate the emergence of the apophysis to the observation of high-density liquid (HDL) water adsorption in the proximity of the liquid/vapor interface.

7.
Phys Rev E ; 106(1-2): 015308, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35974647

ABSTRACT

Fluid dynamics simulations with the lattice Boltzmann method (LBM) are very memory intensive. Alongside reduction in memory footprint, significant performance benefits can be achieved by using FP32 (single) precision compared to FP64 (double) precision, especially on GPUs. Here we evaluate the possibility to use even FP16 and posit16 (half) precision for storing fluid populations, while still carrying arithmetic operations in FP32. For this, we first show that the commonly occurring number range in the LBM is a lot smaller than the FP16 number range. Based on this observation, we develop customized 16-bit formats-based on a modified IEEE-754 and on a modified posit standard-that are specifically tailored to the needs of the LBM. We then carry out an in-depth characterization of LBM accuracy for six different test systems with increasing complexity: Poiseuille flow, Taylor-Green vortices, Karman vortex streets, lid-driven cavity, a microcapsule in shear flow (utilizing the immersed-boundary method), and, finally, the impact of a raindrop (based on a volume-of-fluid approach). We find that the difference in accuracy between FP64 and FP32 is negligible in almost all cases, and that for a large number of cases even 16-bit is sufficient. Finally, we provide a detailed performance analysis of all precision levels on a large number of hardware microarchitectures and show that significant speedup is achieved with mixed FP32/16-bit.

8.
J Phys Chem B ; 125(31): 9005-9018, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34319728

ABSTRACT

Understanding the role of the counterion species in surfactant solutions is a complicated task, made harder by the fact that, experimentally, it is not possible to vary independently bulk and surface quantities. Here, we perform molecular dynamics simulations at constant surface coverage of the liquid/vapor interface of lithium, sodium, potassium, rubidium, and cesium dodecyl sulfate aqueous solutions. We investigate the effect of counterion type and charge sign on the surface tension of the solution, analyzing the contribution of different species and moieties to the lateral pressure profile. The observed trends are qualitatively compatible with the Hofmeister series, with the notable exception of sodium. We point out a possible shortcoming of what is at the moment, in our experience, the most realistic nonpolarizable force field (CHARMM36) that includes the parametrization for the whole series of alkali counterions. In the artificial system where the counterion and surfactant charges are inverted in sign, the counterions become considerably harder. This charge inversion changes considerably the surface tension contributions of the counterions, surfactant headgroups, and water molecules, stressing the key role of the hardness of the counterions in this respect. However, the hydration free energy gain of the counterions, occurring upon charge inversion, is compensated by the concomitant free energy loss of the headgroups and water molecules, leading to a negligible change in the surface tension of the entire system.


Subject(s)
Surface-Active Agents , Water , Ions , Molecular Dynamics Simulation , Surface Tension
9.
J Phys Chem B ; 125(9): 2351-2359, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33634691

ABSTRACT

The speculated presence of monomolecular lamellae of antagonistic salts in oil-water mixtures has left several open questions besides their hypothetical existence, including their microscopic structure and stabilization mechanism. Here, we simulate the spontaneous formation of supramolecular aggregates of the antagonistic salt sodium tetraphenylborate (NaBPh4) in water and 3-methylpyridine (3-MP) at the atomistic level. We show that, indeed, the lamellae are formed by a monomolecular layer of the anion, enveloped by 3-MP and hydrated sodium counterions. To understand which thermodynamic forces drive the aggregation, we compare the full-atomistic model with a simplified one for the salt and show that the strong hydrophobic effect granted by the large excluded volume of the anion, together with electrostatic repulsion, suffice to explain the stability of the monomolecular lamellae.

10.
J Phys Chem B ; 125(2): 665-679, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33423500

ABSTRACT

The distribution of ions in the proximity of the liquid-vapor interface of their aqueous solution has been the subject of an intense debate during the last decade. The effects of ionic polarizability have been one of its salient aspects. Much less has been said about the corresponding dynamical properties, which are substantially unexplored. Here, we investigate the single-particle dynamics at the liquid-vapor interface of several alkali halide solutions, using molecular dynamics simulations with polarizable and nonpolarizable force fields and intrinsic surface analysis. We analyze the diffusion coefficient, residence time, and velocity autocorrelation function of water and ions and investigate how these properties depend on the molecular layer where they reside. While anions are found in the first molecular layer for relatively long times, cations are only making quick excursions into it, thanks to thermal fluctuations. The in-layer residence time of ions and their molar fraction in the layer turned out to be linearly dependent on each other. We interpret this unexpected result using a simple two-state model. In addition, we found that, unlike water and other neat molecular liquids that show a different diffusion mechanism at the surface than in the bulk of their liquid phase, ions do not enjoy enhanced mobility in the surface layer of their aqueous solution. This result indicates that ions in the surface layer are shielded by their nearest water neighbors from being exposed to the vapor phase as much as possible. Such positions are available for the ions at the negatively curved troughs of the molecularly rugged liquid surface.

11.
Soft Matter ; 16(48): 10910-10920, 2020 Dec 28.
Article in English | MEDLINE | ID: mdl-33118575

ABSTRACT

When a suspension dries, the suspending fluid evaporates, leaving behind a dry film composed of the suspended particles. During the final stages of drying, the height of the fluid film on the substrate drops below the particle size, inducing local interface deformations that lead to strong capillary interactions among the particles. Although capillary interactions between rigid particles are well studied, much is still to be understood about the behaviour of soft particles and the role of their softness during the final stages of film drying. Here, we use our recently-introduced numerical method that couples a fluid described using the lattice Boltzmann approach to a finite element description of deformable objects to investigate the drying process of a film with suspended soft particles. Our measured menisci deformations and lateral capillary forces, which agree well with previous theoretical and experimental works in case of rigid particles, show that the deformations become smaller with increasing particle softness, resulting in weaker lateral interaction forces. At large interparticle distances, the force approaches that of rigid particles. Finally, we investigate the time dependent formation of particle clusters at the late stages of the film drying.

12.
J Chem Phys ; 153(14): 144710, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33086842

ABSTRACT

Aided by a neural network representation of the density functional theory potential energy landscape of water in the Revised Perdew-Burke-Ernzerhof approximation corrected for dispersion, we calculate several structural and thermodynamic properties of its liquid/vapor interface. The neural network speed allows us to bridge the size and time scale gaps required to sample the properties of water along its liquid/vapor coexistence line with unprecedented precision.

13.
J Phys Chem B ; 124(44): 9884-9897, 2020 11 05.
Article in English | MEDLINE | ID: mdl-33084342

ABSTRACT

The surface tension of all aqueous alkali halide solutions is higher than that of pure water. According to the Gibbs adsorption equation, this indicates a net depletion of these ions in the interfacial region. However, simulations and experiments show that large, soft ions, such as I-, can accumulate at the liquid/vapor interface. The presence of a loose hydration shell is usually considered to be the reason for this behavior. In this work, we perform computer simulations to characterize the liquid-vapor interface of aqueous alkali chloride and sodium halide solutions systematically, considering all ions from Li+ to Cs+ and from F- to I-. Using computational methods for the removal of surface fluctuations, we analyze the structure of the interface at a dramatically enhanced resolution, showing that the positive excess originates in the very first molecular layer and that the next 3-4 layers account for the net negative excess. With the help of a fictitious system with charge-inverted ion pairs, we also show that it is not possible to rationalize the surface affinity of ions in solutions in terms of the properties of anions and cations separately. Moreover, the surface excess is generally dominated by the smaller of the two ions.

14.
Molecules ; 25(8)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316422

ABSTRACT

We analyze the internal structure and hydration properties of poly(diallyl dimethyl ammonium chloride)/poly(styrene sulfonate sodium salt) oligoelectrolyte multilayers at early stages of their layer-by-layer growth process. Our study is based on large-scale molecular dynamics simulations with atomistic resolution that we presented recently [Sánchez et al., Soft Matter 2019, 15, 9437], in which we produced the first four deposition cycles of a multilayer obtained by alternate exposure of a flat silica substrate to aqueous electrolyte solutions of such polymers at 0.1M of NaCl. In contrast to any previous work, here we perform a local structural analysis that allows us to determine the dependence of the multilayer properties on the distance to the substrate. We prove that the large accumulation of water and ions next to the substrate observed in previous overall measurements actually decreases the degree of intrinsic charge compensation, but this remains as the main mechanism within the interface region. We show that the range of influence of the substrate reaches approximately 3 nm, whereas the structure of the outer region is rather independent from the position. This detailed characterization is essential for the development of accurate mesoscale models able to reach length and time scales of technological interest.


Subject(s)
Electrolytes/chemistry , Polyethylenes/chemistry , Quaternary Ammonium Compounds/chemistry , Algorithms , Models, Molecular , Models, Theoretical , Molecular Structure
15.
Phys Rev E ; 102(6-1): 062801, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33465946

ABSTRACT

A pair of flat parallel surfaces, each freely diffusing along the direction of their separation, will eventually come into contact. If the shapes of these surfaces also fluctuate, then contact will occur when their centers-of-mass remain separated by a nonzero distance ℓ. An example of such a situation is the motion of interfaces between two phases at conditions of thermodynamic coexistence, and in particular the annihilation of domain wall pairs under periodic boundary conditions. Here we present a general approach to calculate the probability distribution of the contact distance ℓ and determine how its most likely value ℓ^{*} depends on the surfaces' lateral size L. Using the Edward-Wilkinson equation as a model for interfaces, we demonstrate that ℓ^{*} scales weakly with system size, i.e., the dependence of ℓ^{*} on L for both (1+1)- and (2+1)-dimensional interfaces is such that lim_{L→∞}(ℓ^{*}/L)=0. In particular, for (2+1)-dimensional interfaces ℓ^{*} is an algebraic function of logL, a result that is confirmed by computer simulations of slab-shaped domains formed under periodic boundary conditions. This weak scaling implies that such domains remain topologically intact until ℓ becomes very small compared to the lateral size of the interface, contradicting expectations from equilibrium thermodynamics.

16.
Soft Matter ; 15(46): 9437-9451, 2019 Dec 14.
Article in English | MEDLINE | ID: mdl-31720676

ABSTRACT

By employing large-scale molecular dynamics simulations of atomistically resolved oligoelectrolytes in aqueous solutions, we study in detail the first four layer-by-layer deposition cycles of an oligoelectrolyte multilayer made of poly(diallyl dimethyl ammonium chloride)/poly(styrene sulfonate sodium salt) (PDADMAC/PSS). The multilayers are grown on a silica substrate in 0.1 M NaCl electrolyte solutions and the swollen structures are then subsequently exposed to varying added salt concentration. We investigated the microscopic properties of the films, analyzing in detail the differences between three- and four-layer systems. Our simulations provide insights into the early stages of growth of a multilayer, which are particularly challenging for experimental observations. We found rather strong complexation of the oligoelectrolytes, with fuzzy layering of the film structure. The main charge compensation mechanism is for all cases intrinsic, whereas extrinsic compensation is relatively enhanced for the layer of the last deposition cycle. In addition, we quantified other fundamental observables of these systems, such as the film thickness, water uptake, and overcharge fractions for each deposition layer.

17.
J Chem Phys ; 151(10): 104502, 2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31521081

ABSTRACT

We computed the phase diagram of CO2 hydrates at high pressure (HP), from 0.3 to 20 kbar, by means of molecular dynamics simulations. The two CO2 hydrates known to occur in this pressure range are the cubic structure I (sI) clathrate and the HP hydrate, whose water framework is the recently discovered ice XVII. We investigated the stability of both hydrates upon heating (melting) as well as the phase changes upon compression. The CO2-filled ice XVII is found to be more stable than the sI clathrate and than the mixture of ice VI and dry ice at pressure values ranging from 6 to 18 kbar and in a wide temperature range, although a phenomenological correction suggests that the stability should more realistically range from 6.5 to 13.5 kbar. Our simulation results support the current hypothesis that the HP hydrate is stable at temperatures above the melting curve of ice VI.

18.
Biochim Biophys Acta Biomembr ; 1861(3): 594-609, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30571949

ABSTRACT

Computer simulations of four lipid membranes of different compositions, namely neat DPPC and PSM, and equimolar DPPC-cholesterol and PSM-cholesterol mixtures, are performed in the presence and absence of the general anesthetics diethylether and sevoflurane both at 1 and 600 bar. The results are analyzed in order to identify membrane properties that are potentially related to the molecular mechanism of anesthesia, namely that change in the same way in any membrane with any anesthetics, and change oppositely with increasing pressure. We find that the lateral lipid density satisfies both criteria: it is decreased by anesthetics and increased by pressure. This anesthetic-induced swelling is attributed to only those anesthetic molecules that are located close to the boundary of the apolar phase. This lateral expansion is found to lead to increased lateral mobility of the lipids, an effect often thought to be related to general anesthesia; to an increased fraction of the free volume around the outer preferred position of anesthetics; and to the decrease of the lateral pressure in the nearby range of the ester and amide groups, a region into which anesthetic molecules already cannot penetrate. All these changes are reverted by the increase of pressure. Another important finding of this study is that cholesterol has an opposite effect on the membrane properties than anesthetics, and, correspondingly, these changes are less marked in the presence of cholesterol. Therefore, changes in the membrane that can lead to general anesthesia are expected to occur in the membrane domains of low cholesterol content.


Subject(s)
Anesthetics, General/pharmacology , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Membranes/drug effects , 1,2-Dipalmitoylphosphatidylcholine/chemistry , 1,2-Dipalmitoylphosphatidylcholine/metabolism , Cholesterol/chemistry , Cholesterol/metabolism , Computer Simulation , Lipid Bilayers/metabolism , Membrane Lipids/metabolism , Membranes/metabolism , Models, Molecular , Molecular Dynamics Simulation , Pressure
19.
Soft Matter ; 14(47): 9571-9576, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30444235

ABSTRACT

Droplet transport in microfluidic channels by electrically induced flows often entails the simultaneous presence of electroosmosis and electrophoresis. Here we make use of coupled lattice-Boltzmann/molecular dynamics simulations to compute the mobility of a droplet in a microchannel under the effect of an external electric field. By varying the droplet solvation free energy of the counterions released at the channel walls, we observe the continuous transition between the electroosmotic and electrophoretic regime. We show that it is possible to describe the mobility of a droplet in a unified, consistent way, by combining the theoretical description of the electroosmotic flow with, in this case, the Hückel limit of electrophoresis, modified in order to take into account the Hadamard-Rybczynski droplet drag.

20.
J Comput Chem ; 39(25): 2118-2125, 2018 09 30.
Article in English | MEDLINE | ID: mdl-30306571

ABSTRACT

Pytim is a versatile python framework for the analysis of interfacial properties in molecular simulations. The code implements several algorithms for the identification of instantaneous interfaces of arbitrary shape, and analysis tools written specifically for the study of interfacial properties, such as intrinsic profiles. The code is written in the python language, and makes use of the numpy and scipy packages to deliver high computational performances. Pytim relies on the MDAnalysis library to analyze the trajectory file formats of popular simulation packages such as gromacs, charmm, namd, lammps or Amber, and can be used to steer OpenMM simulations. Pytim can write information about surfaces and surface atomic layers to vtk, cube, and pdb files for easy visualization. The classes of Pytim can be easily customized and extended to include new interfacial algorithms or analysis tools. The code is available as open source and is free of charge. © 2018 The Authors. Journal of Computational Chemistry published by Wiley Periodicals, Inc.

SELECTION OF CITATIONS
SEARCH DETAIL
...