Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 11(10)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36297198

ABSTRACT

Trypanosoma cruzi is a parasite transmitted by the feces of triatomines. Many triatomine species are found in Mexico, and various T. cruzi variants have been isolated from these species, each showing very different virulence and cell tropism. The isolates were obtained from Meccus phyllosoma specimens in three localities in the state of Oaxaca, Mexico: Tehuantitla, Vixhana, and Guichivere. The virulence of each isolate was assessed by quantifying parasitemia, survival, and histopathologic findings. The lineage of each isolate was identified using the mini-exon gene. The expression of the tssa gene during infection was detected in the heart, esophagus, gastrocnemius, and brain. Our results show that the maximum post-infection parasitemia was higher for the Tehuantitla isolate. On genotyping, all isolates were identified as T. cruzi I. The amastigotes in the heart and gastrocnemius were verified for all isolates, but in the brain only for Tehuantitla and Vixhana. The tssa expression allowed us to detect T. cruzi isolates, for Tehuantitla, predominantly in the heart. For Vixhana, a higher tssa expression was detected in gastrocnemius, and for Guichivere, it was higher in the esophagus. Results show that virulence, tropism, and tssa expression can vary, even when the isolates are derived from the same vector species, in the same region, and at similar altitudes.

2.
J Fungi (Basel) ; 8(9)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36135695

ABSTRACT

The halotolerant yeast Debaryomyces hansenii belongs to the CTG-Ser1 clade of fungal species that use the CUG codon to translate as leucine or serine. The ambiguous decoding of the CUG codon is relevant for expanding protein diversity, but little is known about the role of leucine-serine ambiguity in cellular adaptations to extreme environments. Here, we examine sequences and structures of tRNACAG from the CTG-Ser1 clade yeasts, finding that D. hansenii conserves the elements to translate ambiguously. Then, we show that D. hansenii has tolerance to conditions of salinity, acidity, alkalinity, and oxidative stress associated with phenotypic and ultrastructural changes. In these conditions, we found differential expression in both the logarithmic and stationary growth phases of tRNASer, tRNALeu, tRNACAG, LeuRS, and SerRS genes that could be involved in the adaptive process of this yeast. Finally, we compare the proteomic isoelectric points and hydropathy profiles, detecting that the most important variations among the physicochemical characteristics of D. hansenii proteins are in their hydrophobic and hydrophilic interactions with the medium. We propose that the ambiguous translation, i.e., leucylation or serynation, on translation of the CUG-encoded residues, could be linked to adaptation processes in extreme environments.

3.
Microorganisms ; 10(4)2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35456844

ABSTRACT

Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.

4.
J Phycol ; 57(6): 1699-1720, 2021 12.
Article in English | MEDLINE | ID: mdl-34289115

ABSTRACT

A number of heterocytous, mat-forming, tapering cyanobacteria in Rivulariaceae have recently been observed in both the Atlantic and Pacific coasts in the rocky intertidal and supratidal zones. These belong to the genera Nunduva, Kyrtuthrix, and Phyllonema and have been the subject of several recent studies. Herein, two new species of Nunduva (N. komarkovae and N. sanagustinensis) and two new species of Kyrtuthrix (K. munecosensis and K. totonaca) are characterized and described from the coasts of Mexico. Genetic separation based on the 16S-23S ITS region was pronounced (>10% in all comparisons). Morphological differences between all existing species in these two genera were also observed, but the group is morphologically complex, and these taxa are considered pseudocryptic. Nunduva and Kyrtuthrix remain morphologically and phylogenetically separate even with the addition of new species. However, how long will this remain the case? Many new genera and species of cyanobacteria have recently been described. Will the taxonomy of cyanobacteria eventually become saturated? Will we start to see multiple populations for the same cryptic species, or will future taxonomists collapse multiple species into fewer species, or multiple genera into single genera. The description of even more Nunduva and Kyrtuthrix species causes us to pause and evaluate the future of cyanobacterial taxonomy. These same questions are faced by algal taxonomists studying other phyla, and the resolution may ultimately be similar.


Subject(s)
Cyanobacteria , Cyanobacteria/genetics , Mexico , Phylogeny , RNA, Ribosomal, 16S
5.
Curr Microbiol ; 77(12): 4000-4015, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33064189

ABSTRACT

The function of catalases A and T from the budding yeast Saccharomyces cerevisiae (ScCta1 and ScCtt1) is to decompose hydrogen peroxide (H2O2) to mitigate oxidative stress. Catalase orthologs are widely found in yeast, suggesting that scavenging H2O2 is crucial to avoid the oxidative damage caused by reactive oxygen species (ROS). However, the function of catalase orthologs has not yet been experimentally characterized in vivo. Here, we heterologously expressed Debaryomyces hansenii DhCTA1 and DhCTT1 genes, encoding ScCta1 and ScCtt1 orthologs, respectively, in a S. cerevisiae acatalasemic strain (cta1Δ ctt1Δ). We performed a physiological analysis evaluating growth, catalase activity, and H2O2 tolerance of the strains grown with glucose or ethanol as carbon source, as well as under NaCl stress. We found that both genes complement the catalase function in S. cerevisiae. Particularly, the strain harboring DhCTT1 showed improved growth when ethanol was used as carbon source both in the absence or presence of salt stress. This phenotype is attributed to the high catalase activity of DhCtt1 detected at the exponential growth phase, which prevents intracellular ROS accumulation and confers oxidative stress resistance.


Subject(s)
Debaryomyces , Saccharomycetales , Catalase/genetics , Catalase/metabolism , Hydrogen Peroxide/toxicity , Oxidative Stress , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism
6.
J Phycol ; 55(4): 898-911, 2019 08.
Article in English | MEDLINE | ID: mdl-31012104

ABSTRACT

A population of Desertifilum (Cyanobacteria, Oscillatoriales) from an oligotrophic desertic biotope was isolated and characterized using a polyphasic approach including molecular, morphological, and ecological information. The population was initially assumed to be a new species based on ecological and biogeographic separation from other existing species, however, phylogenetic analyses based on sequences of the 16S rRNA gene and 16S-23S ITS region, placed this strain clearly within the type species, Desertifilum tharense. Comparative analysis of morphology, 16S rRNA gene similarity, 16S-23S ITS secondary structure, and percent dissimilarity of the ITS regions for all characterized strains supports placing the six Desertifilum strains (designated as PD2001/TDC17, UAM-C/S02, CHAB7200, NapGTcm17, IPPAS B-1220, and PMC 872.14) into D. tharense. The recognition of Desertifilum salkalinema and Desertifilum dzianense is not supported, although our analysis does support continued recognition of Desertifilum fontinale. Pragmatic criteria for recognition of closely related species are proposed based on this study and others, and more rigorous review of future taxonomic papers is recommended.


Subject(s)
Cyanobacteria , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA
7.
J Phycol ; 54(5): 638-652, 2018 10.
Article in English | MEDLINE | ID: mdl-30055049

ABSTRACT

Two untapered, heterocytous species were observed and collected from the intertidal and supratidal zones of the Mexican coastline of the Pacific Ocean near Oaxaca and from the Gulf of Mexico. These populations were highly similar in morphology to the freshwater taxon Petalonema incrustans in the Scytonemataceae. However, 16S rRNA sequence data and phylogenetic analysis indicated that they were sister taxa to the epiphyllic, Brazilian species Phyllonema aveceniicola in the Rivulariaceae, described from culture material. While genetic identity between the two new species was high, they differed significantly in morphology, 16S rRNA gene sequence identity, and sequence and structure of the 16S-23S ITS region. Their morphology differed markedly from the generitype of the previously monotypic Phyllonema, which has tapered, heteropolar, single-false branched trichomes with very thin or absent sheath. The two new species, Phyllonema ansata and Phyllonema tangolundensis, described from both culture and environmental material, have untapered, isopolar, geminately false branched trichomes with thick, lamellated sheaths, differences so significant that the species would not be placed in Phyllonema without molecular corroboration. The morphological differences are so significant that a formal emendation of the genus is required. These taxa provide a challenge to algal taxonomy because the morphological differences are such that one would logically conclude that they represent different genera, but the phylogenetic evidence for including them all in the same genus is conclusive. This conclusion is counter to the current trend in algal taxonomy in which taxa with minor morphological differences have been repeatedly placed in separate genera based primarily upon DNA sequence evidence.


Subject(s)
Cyanobacteria/classification , Cyanobacteria/cytology , Algal Proteins/analysis , Cyanobacteria/genetics , Cyanobacteria/ultrastructure , DNA, Ribosomal Spacer/analysis , Mexico , Phylogeny , Protein Structure, Secondary , RNA, Algal/analysis , RNA, Ribosomal, 16S/analysis , Sequence Analysis, RNA
8.
Curr Microbiol ; 62(3): 933-43, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21061125

ABSTRACT

Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.


Subject(s)
Catalase/biosynthesis , Gene Expression Profiling , Saccharomycetales/enzymology , Amino Acid Sequence , Catalase/chemistry , Catalase/genetics , Drug Resistance, Fungal , Hydrogen Peroxide/toxicity , Microbial Viability/drug effects , Molecular Sequence Data , Molecular Weight , Saccharomycetales/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...