Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 11(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35161403

ABSTRACT

Plant heterotrimeric G proteins have been shown to regulate the size of various organs. There are three types of Gγ subunits in plants: type A, consisting of a canonical Gγ domain; type B, possessing a plant-specific domain at the N-terminus of the Gγ domain; and type C, possessing a plant-specific domain at the C-terminal of the Gγ domain. There is one type A, one type B, and three type C of the five γ-subunits in the rice genome. In type C Gγ subunits, GS3, which controls grain size; DEP1, which controls plant height and panicle branching; and their homolog OsGGC2, which affects grain size, have been reported; however, the function of each gene, their interactions, and molecular mechanisms for the control of plant height have not yet been clarified. In this study, we generated loss-of-function mutants of DEP1 and OsGGC2, which have high homology and similar expression, and investigated their phenotypes. Since both dep1 and osggc2 mutants were dwarfed and the double mutants showed a synergistic phenotype, we concluded that both DEP1 and OsGGC2 are positive regulators of plant height and that their functions are redundant.

2.
Breed Sci ; 70(4): 456-461, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32968348

ABSTRACT

Grain size is one of the most important agricultural traits in rice. To increase grain yield, we screened a large grain mutant from mutants with the 'Koshihikari' background. As a result, we obtained a mutant, KEMS39, that has a large grain size and increased yield. Cultivation tests revealed that this mutant had improved lodging resistance with thicker internodes. Next-generation sequencing analysis revealed the presence of a 67 bp deletion in the GW2 mRNA, owing to a mutation in the 3' splice site of the sixth intron of the GW2 gene. To determine whether this mutation was responsible for the larger grain and thicker internodes, we performed gene editing and obtained a mutant with a 7 bp deletion, including this 3' splice site. As this gw2 mutant had large grains and thicker internodes, the causal gene of KEMS39 was determined as GW2. Thicker internodes are attributed to the pleiotropic effect of gw2 mutation. On the basis of these results, we conclude that gw2 mutation has the potential to be an important genetic resource with the ability to achieve a well-balanced and high-yielding effect that simultaneously improves grain productivity and lodging resistance.

3.
Breed Sci ; 67(4): 393-397, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29085249

ABSTRACT

Grain size is a trait that is important for rice (Oryza sativa L.) yield potential. Many genes regulating grain size have been identified, deepening our understanding of molecular mechanisms of grain size determination in rice. Previously, we cloned SMALL AND ROUND SEED 5 (SRS5) gene (encoding alpha-tubulin) from a small and round seed mutant and revealed that this gene regulates grain length independently of the brassinosteroid (BR) signaling pathway, although BR-related mutants set small grain. In this study, we showed that overexpression of SRS5 can promote grain length and demonstrated that the overexpression of SRS5 in BR-related mutants rescued the shortened grain length, which is an unfavorable phenotype in the yield potential of BR-related mutants, while preserving the useful semi-dwarf and erect leaf phenotypes.

4.
Rice (N Y) ; 9(1): 34, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27457210

ABSTRACT

BACKGROUND: Grain size is an important trait that affects rice yield. Although many genes that contribute to grain size have been cloned from mutants or by quantitative trait locus (QTL) analysis based on bi-parental mapping, the molecular mechanisms underlying grain-size determination remain poorly understood. In this study, we identified the lines with the largest grain size and detected novel QTLs affecting the grain size. RESULTS: We screened the National Institute for Agrobiological Sciences Genebank database and identified two rice lines, BG23 with the widest grain and LG10 with the longest grain. Using these two lines, we performed QTL analysis for grain size. Eight QTLs were detected during the QTL analyses using F2 populations derived from crosses between the large-grain lines BG23 or LG10 and the middle-size grain cultivars Nipponbare and Kasalath. Both BG23 and LG10 possessed large-grain alleles of four major QTLs: GW2, GS3, qSW5/GW5, and GW8. Other three minor QTLs were derived from BG23. However, these QTLs did not explain the differences in grain size between these two lines. Additionally, four QTLs for grain length or width were detected in an F2 population derived from a cross between BG23 and LG10; this population lacked the strong effects of the four major QTLs shared by both parent plants. Of these newly detected QTLs, the effects of two QTLs, GL3b and GL6, were confirmed by progeny testing. Comparison of the length of inner epidermal cells in plants homozygous for BG23 and LG10 alleles indicated that GL3b and GL6 genes regulate cell elongation and cell division, respectively. CONCLUSIONS: In this study, we detected 12 loci including 14 QTLs regulating grain size from two lines with largest grains available in Japanese stock. Of these loci, we confirmed the effect of two gene loci and mapped their candidate region. Identification of novel genes regulating grain size will contribute to our understanding of the molecular mechanisms controlling grain size.

5.
Proc Natl Acad Sci U S A ; 112(1): 76-81, 2015 Jan 06.
Article in English | MEDLINE | ID: mdl-25535376

ABSTRACT

Grain weight is an important crop yield component; however, its underlying regulatory mechanisms are largely unknown. Here, we identify a grain-weight quantitative trait locus (QTL) encoding a new-type GNAT-like protein that harbors intrinsic histone acetyltransferase activity (OsglHAT1). Our genetic and molecular evidences pinpointed the QTL-OsglHAT1's allelic variations to a 1.2-kb region upstream of the gene body, which is consistent with its function as a positive regulator of the traits. Elevated OsglHAT1 expression enhances grain weight and yield by enlarging spikelet hulls via increasing cell number and accelerating grain filling, and increases global acetylation levels of histone H4. OsglHAT1 localizes to the nucleus, where it likely functions through the regulation of transcription. Despite its positive agronomical effects on grain weight, yield, and plant biomass, the rare allele elevating OsglHAT1 expression has so far escaped human selection. Our findings reveal the first example, to our knowledge, of a QTL for a yield component trait being due to a chromatin modifier that has the potential to improve crop high-yield breeding.


Subject(s)
Alleles , Biomass , Histone Acetyltransferases/genetics , Oryza/growth & development , Oryza/genetics , Plant Proteins/genetics , Seeds/growth & development , Cell Count , Cell Nucleus/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Humans , Molecular Sequence Data , Oryza/enzymology , Promoter Regions, Genetic/genetics , Quantitative Trait Loci/genetics
6.
Rice (N Y) ; 5(1): 4, 2012.
Article in English | MEDLINE | ID: mdl-24764504

ABSTRACT

Seed size is an important trait in determinant of rice seed quality and yield. In this study, we report a novel semi-dominant mutant Small and round seed 5 (Srs5) that encodes alpha-tubulin protein. Lemma cell length was reduced in Srs5 compared with that of the wild-type. Mutants defective in the G-protein alpha subunit (d1-1) and brassinosteroid receptor, BRI1 (d61-2) also exhibited short seed phenotypes, the former due to impaired cell numbers and the latter due to impaired cell length. Seeds of the double mutant of Srs5 and d61-2 were smaller than those of Srs5 or d61-2. Furthermore, SRS5 and BRI1 genes were highly expressed in Srs5 and d61-2 mutants. These data indicate that SRS5 independently regulates cell elongation of the brassinosteroid signal transduction pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...