Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Ergon ; 119: 104307, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38735234

ABSTRACT

Sterile Processing Departments (SPDs) must clean, maintain, store, and organize surgical instruments which are then delivered to Operating Rooms (ORs) using a Courier Network, with regular coordination occurring across departmental boundaries. To represent these relationships, we utilized the Systems Engineering Initiative for Patient Safety (SEIPS) 101 Toolkit, which helps model how health-related outcomes are affected by healthcare work systems. Through observations and interviews which built on prior work system analyses, we developed a SEIPS 101 journey map, PETT scan, and tasks matrices to represent the instrument reprocessing work system, revealing complex interdependencies between the people, tools, and tasks occurring within it. The SPD, OR and Courier teams are found to have overlapping responsibilities and a clear co-dependence, with critical implications for the successful functioning of the whole hospital system.


Subject(s)
Equipment Reuse , Operating Rooms , Surgical Instruments , Humans , Patient Safety , Systems Analysis , Sterilization/methods , Task Performance and Analysis
2.
J Clin Invest ; 126(8): 2989-3005, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27348588

ABSTRACT

Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy.


Subject(s)
Cardiomegaly/metabolism , Gene Expression Regulation , Lentigo/metabolism , Noonan Syndrome/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Animals , Apoptosis , Cell Lineage , Disease Models, Animal , Endocardium/metabolism , Female , Heterozygote , Homozygote , Male , Mice , Mice, Inbred C57BL , Mutation , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...