Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Radiol Prot ; 40(4)2020 11 11.
Article in English | MEDLINE | ID: mdl-33027775

ABSTRACT

The outbreak of coronavirus SARS-COV2 affected more than 180 countries necessitating fast and accurate diagnostic tools. Reverse transcriptase polymerase chain reaction (RT-PCR) has been identified as a gold standard test with Chest CT and Chest Radiography showing promising results as well. However, radiological solutions have not been used extensively for the diagnosis of COVID-19 disease, partly due to radiation risk. This study aimed to provide quantitative comparison of imaging radiation risk versus COVID risk. The analysis was performed in terms of mortality rate per age group. COVID-19 mortality was extracted from epidemiological data across 299, 004 patients published by ISS-Integrated surveillance of COVID-19 in Italy. For radiological risk, the study considered 659 Chest CT performed in adult patients. Organ doses were estimated using a Monte Carlo method and then used to calculate Risk Index that was converted into an upper bound for related mortality rate following NCI-SEER data. COVID-19 mortality showed a rapid rise for ages >30 years old (min: 0.30%; max: 30.20%), whereas only four deaths were reported in the analysed patient cohort for ages <20 years old. The rates decreased for radiation risk across age groups. The median mortality rate across all ages for Chest-CT and Chest-Radiography were 0.007% (min: 0.005%; max: 0.011%) and 0.0003% (min: 0.0002%; max: 0.0004%), respectively. COVID-19, Chest Radiography, and Chest CT mortality rates showed different magnitudes and trends across age groups. In higher ages, the risk of COVID-19 far outweighs that of radiological exams. Based on risk comparison alone, Chest Radiography and CT for COVID-19 care is justified for patients older than 20 and 30 years old, respectively. Notwithstanding other aspects of diagnosis, the present results capture a component of risk consideration associated with the use of imaging for COVID. Once integrated with other diagnostic factors, they may help inform better management of the pandemic.


Subject(s)
COVID-19 , Adult , Humans , Pandemics , RNA, Viral , Radiography, Thoracic , SARS-CoV-2 , Young Adult
2.
Med Phys ; 47(12): 6562-6566, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32628272

ABSTRACT

PURPOSE: Patient radiation burden in computed tomography (CT) can best be characterized through risk estimates derived from organ doses. Organ doses can be estimated by Monte Carlo simulations of the CT procedures on computational phantoms assumed to emulate the patients. However, the results are subject to uncertainties related to how accurately the patient and CT procedure are modeled. Different methods can lead to different results. This paper, based on decades of organ dosimetry research, offers a database of CT scans, scan specifics, and organ doses computed using a validated Monte Carlo simulation of each patient and acquisition. It is aimed that the database can serve as means to benchmark different organ dose estimation methods against a benchmark dataset. ACQUISITION AND VALIDATION METHODS: Organ doses were estimated for 40 adult patients (22 male, 18 female) who underwent chest and abdominopelvic CT examinations. Patient-based computational models were created for each patient including 26 organs for female and 25 organs for male cases. A Monte Carlo code, previously validated experimentally, was applied to calculate organ doses under constant and two modulated tube current conditions. DATA FORMAT AND USAGE NOTES: The generated database reports organ dose values for chest and abdominopelvic examinations per patient and imaging condition. Patient information and images and scan specifications (energy spectrum, bowtie filter specification, and tube current profiles) are provided. The database is available at publicly accessible digital repositories. POTENTIAL APPLICATIONS: Consistency in patient risk estimation, and associated justification and optimization requires accuracy and consistency in organ dose estimation. The database provided in this paper is a helpful tool to benchmark different organ dose estimation methodologies to facilitate comparisons, assess uncertainties, and improve risk assessment of CT scans based on organ dose.


Subject(s)
Benchmarking , Tomography, X-Ray Computed , Adult , Computer Simulation , Female , Humans , Male , Monte Carlo Method , Phantoms, Imaging , Radiation Dosage
3.
Phys Med Biol ; 59(14): 3669-82, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24925891

ABSTRACT

The development of methods for correcting patient motion in emission tomography has been receiving increased attention. Often the performance of these methods is evaluated through simulations using digital anthropomorphic phantoms, such as the commonly used extended cardiac torso (XCAT) phantom, which models both respiratory and cardiac motion based on human studies. However, non-rigid body motion, which is frequently seen in clinical studies, is not present in the standard XCAT phantom. In addition, respiratory motion in the standard phantom is limited to a single generic trend. In this work, to obtain a more realistic representation of motion, we developed a series of individual-specific XCAT phantoms, modeling non-rigid respiratory and non-rigid body motions derived from the magnetic resonance imaging (MRI) acquisitions of volunteers. Acquisitions were performed in the sagittal orientation using the Navigator methodology. Baseline (no motion) acquisitions at end-expiration were obtained at the beginning of each imaging session for each volunteer. For the body motion studies, MRI was again acquired only at end-expiration for five body motion poses (shoulder stretch, shoulder twist, lateral bend, side roll, and axial slide). For the respiratory motion studies, an MRI was acquired during free/regular breathing. The magnetic resonance slices were then retrospectively sorted into 14 amplitude-binned respiratory states, end-expiration, end-inspiration, six intermediary states during inspiration, and six during expiration using the recorded Navigator signal. XCAT phantoms were then generated based on these MRI data by interactive alignment of the organ contours of the XCAT with the MRI slices using a graphical user interface. Thus far we have created five body motion and five respiratory motion XCAT phantoms from the MRI acquisitions of six healthy volunteers (three males and three females). Non-rigid motion exhibited by the volunteers was reflected in both respiratory and body motion phantoms with a varying extent and character for each individual. In addition to these phantoms, we recorded the position of markers placed on the chest of the volunteers for the body motion studies, which could be used as external motion measurement. Using these phantoms and external motion data, investigators will be able to test their motion correction approaches for realistic motion obtained from different individuals. The non-uniform rational B-spline data and the parameter files for these phantoms are freely available for downloading and can be used with the XCAT license.


Subject(s)
Image Processing, Computer-Assisted/methods , Movement , Phantoms, Imaging , Positron-Emission Tomography/instrumentation , Respiration , Tomography, Emission-Computed, Single-Photon/instrumentation , Female , Humans , Magnetic Resonance Imaging , Male , Torso/diagnostic imaging
4.
Phys Med Biol ; 58(11): 3631-47, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23648371

ABSTRACT

In radiopharmaceutical therapy, an understanding of the dose distribution in normal and target tissues is important for optimizing treatment. Three-dimensional (3D) dosimetry takes into account patient anatomy and the nonuniform uptake of radiopharmaceuticals in tissues. Dose-volume histograms (DVHs) provide a useful summary representation of the 3D dose distribution and have been widely used for external beam treatment planning. Reliable 3D dosimetry requires an accurate 3D radioactivity distribution as the input. However, activity distribution estimates from SPECT are corrupted by noise and partial volume effects (PVEs). In this work, we systematically investigated OS-EM based quantitative SPECT (QSPECT) image reconstruction in terms of its effect on DVHs estimates. A modified 3D NURBS-based Cardiac-Torso (NCAT) phantom that incorporated a non-uniform kidney model and clinically realistic organ activities and biokinetics was used. Projections were generated using a Monte Carlo (MC) simulation; noise effects were studied using 50 noise realizations with clinical count levels. Activity images were reconstructed using QSPECT with compensation for attenuation, scatter and collimator-detector response (CDR). Dose rate distributions were estimated by convolution of the activity image with a voxel S kernel. Cumulative DVHs were calculated from the phantom and QSPECT images and compared both qualitatively and quantitatively. We found that noise, PVEs, and ringing artifacts due to CDR compensation all degraded histogram estimates. Low-pass filtering and early termination of the iterative process were needed to reduce the effects of noise and ringing artifacts on DVHs, but resulted in increased degradations due to PVEs. Large objects with few features, such as the liver, had more accurate histogram estimates and required fewer iterations and more smoothing for optimal results. Smaller objects with fine details, such as the kidneys, required more iterations and less smoothing at early time points post-radiopharmaceutical administration but more smoothing and fewer iterations at later time points when the total organ activity was lower. The results of this study demonstrate the importance of using optimal reconstruction and regularization parameters. Optimal results were obtained with different parameters at each time point, but using a single set of parameters for all time points produced near-optimal dose-volume histograms.


Subject(s)
Image Processing, Computer-Assisted/methods , Radiation Dosage , Radiopharmaceuticals/therapeutic use , Radiotherapy, Image-Guided/methods , Tomography, Emission-Computed, Single-Photon , Monte Carlo Method , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Phantoms, Imaging , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...