Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 79(12): 1359-1369, 2023 Dec 20.
Article in Japanese | MEDLINE | ID: mdl-37766581

ABSTRACT

We used the Voronoi diagram of a computed tomography (CT) application (i.e., CT liver volume measurement) to depict the liver area, and we obtained depictions of the hepatic segments as a three-dimensional (3D) image based on clinical data; this information can be used for the patient's education and for surgical planning. The hepatic segments use the inter-relationships among the eight subsegments illustrated by Couinaud, those indicated by the portal veins and those provided by hepatic veins. The liver has dual portal and arterial innervation, with the thick portal vein intertwined with thin arteries similar to the intertwining of ivy plants. Couinaud divided the liver into eight segments (S1 to S8) based on portal vein casts. The Voronoi diagram estimates the dominant region of the portal vein, divides the liver into segments, and produces 3D images and multiplanar reconstruction (MPR) images in color. To support understanding of Couinaud's eight hepatic segments (which are explained only in the illustration of the frontal view of the liver), using 3D images created by the Voronoi diagram, we created 3D stereo color anatomical charts of the liver that Couinaud's eight hepatic segments can be confirmed from multiple directions. In addition, we created the MPR color anatomical charts of the liver (S1 to S8) that can be confirmed by color from three directions: axial images, coronal images, and sagittal images in the same way. We converted the data of this anatomical chart into an electronic file that provides a tool that can be easily used in radiological examinations, and we were able to make improvements based on requests from users.


Subject(s)
Liver , Portal Vein , Humans , Liver/diagnostic imaging , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional , Radiography
2.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 78(6): 599-607, 2022 Jun 20.
Article in Japanese | MEDLINE | ID: mdl-35569959

ABSTRACT

We published a report entitled "Creation of a stereo-paired bone anatomical chart using human bone specimen for radiation education" in this journal in order to accurately understand the surface structure and three-dimensional structure of bones, and assist in bone image interpretation. However, some people cannot see stereoscopically with the naked eye. Therefore, we created anaglyph three-dimensional (3D) images from stereo-paired images of the stereo X-ray anatomical chart of the bone specimen. The anaglyph of the bone surface and X-ray images facilitates stereoscopic viewing with red-blue 3D glasses. The stereo X-ray anatomical chart of the bone specimen with anaglyph 3D images was converted into an electronic data file in the same manner as the stereo X-ray anatomical chart of the bone specimen, which can be easily used in any radiological examination rooms or at home through an electronic medium. We made it possible to perform correlative stereoscopic observations of the bone surface and X-ray images using red-blue 3D glasses.


Subject(s)
Imaging, Three-Dimensional , Humans , Imaging, Three-Dimensional/methods , Radiography , X-Rays
3.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 78(6): 608-614, 2022 Jun 20.
Article in Japanese | MEDLINE | ID: mdl-35569960

ABSTRACT

Senior radiological technologists have made various improvements and have supported the clinical and educational fields by explaining bone X-ray radiography to students and junior radiological technologists to understand the procedure using illustrations, X-ray images, and photographs in a way that corresponds to the design software available for that era. Because human bone specimens are only available in the anatomy laboratory of medical schools, they could not be used for the explanation of bone X-ray radiography until now. Therefore, we have developed a bone X-ray radiography manual using bone specimens for the bone X-ray radiography education, which helps students to understand the procedure of bone X-ray radiography. Previous bone X-ray radiography manuals had not been illustrated by bone specimens and bone specimen X-ray images, but this bone X-ray radiography manual using bone specimens has made it possible to understand the surface morphology of bone specimens and X-ray images of them. In addition, the data of bone X-ray radiography using this bone specimen were made into an electronic file, which can be easily used at the place of radiological examination or at home through electronic media.


Subject(s)
X-Rays , Humans , Radiography
4.
Article in Japanese | MEDLINE | ID: mdl-35046223

ABSTRACT

Three-dimensional (3D) images of blood vessels in the human body, which are acquired by X-ray computed tomography (CT) and cone-beam CT of Angiography devices, are widely used in medical diagnosis and treatment. Using the 3DCT images of blood vessels, we created stereo-paired color vascular anatomical charts for better understanding of vascular anatomy in clinical settings, patient explanations, and student education. Since it is difficult to distinguish branches of blood vessels that show three-dimensionally complicated running such as cerebral blood vessels, we made it easier to identify them anatomically by color-coding each branch of the blood vessel. Also, by using stereo-paired images, we can see the three-dimensional blood vessel running. In the past anatomical books and vascular anatomy atlas, there was no anatomical chart of the whole body blood vessels that could be color-coded and stereoscopically viewed. We have made it possible to identify blood vessels by the stereoscopic vision of the blood vessels using this stereo-paired color anatomical chart. In addition, this vascular anatomical chart can be additionally revised according to the needs of the clinical and educational settings to be used, and the data can be converted into an electronic file so that it can be easily used in the field of radiological examination or at home through electronic media.


Subject(s)
Imaging, Three-Dimensional , Tomography, X-Ray Computed , Head , Humans , Radiography
5.
Article in Japanese | MEDLINE | ID: mdl-33883371

ABSTRACT

In a previous issue of this journal, we published a report entitled "Creation of Stereo-paired Bone Anatomical Charts Using Human Bone Specimens for Radiation Education" To understand how the bone specimen is visualized as an X-ray image, we newly created a bone specimen stereo-paired X-ray anatomical chart by adding the X-ray images of the same bone specimen. When a bone is X-rayed, the surface structure and internal structure of the bone are visualized as a composite image of the difference in X-ray absorption, and each bone becomes a unique X-ray image. Therefore, we took stereo-paired X-ray images of the bone specimens by the same method as the stereo-paired anatomical chart of the bone specimens. Then, we arranged the stereo-paired X-ray images and surface images of the same bone specimen in the one sheet to be readily compared. Similar to the previous bone specimen anatomical charts, these data of X-ray image anatomical chart were also made into an electronic file, so that we can do the three-dimensional observation of bone X-ray images even at the place of radiological examination or at home through electronic media. Until now, none of the specialized anatomy books and pictorial books are available for stereoscopic viewing of bone specimens and bone X-ray images. However, this stereo-paired X-ray image anatomical chart enabled us to learn accurate three-dimensionalization of bones by comparing the bone surface morphology and bone X-ray images.


Subject(s)
Comprehension , Learning , Humans , Imaging, Three-Dimensional , Radiography , X-Rays
6.
Nihon Hoshasen Gijutsu Gakkai Zasshi ; 76(12): 1281-1286, 2020.
Article in Japanese | MEDLINE | ID: mdl-33342947

ABSTRACT

In radiological examinations of patients, we often take stacked images and three-dimensional (3D) images of human bone radiological images such as X-ray images and CT images. In general, learning of bone structure using specialized anatomy books is currently performed at medical radiological technologist education facilities. In the anatomy education of the medical school, in order to understand the structure of human and the individual bone shapes in detail, a real human bone specimen is used to gain knowledge of skeleton, bone shape, bone name and bone function. But it is actually difficult for a radiological technologist to obtain such learning opportunities. Therefore, we had to depend on two-dimensional information from an anatomical atlas so far. Therefore, as a method to solve this, we devised this stereo-paired bone anatomical chart by stereoscopic photography of a real human bone specimen that is available only in the anatomy laboratory. In classical anatomy textbooks, there are no figures that enable us to view 3D structures of human bones. Our stereo-paired bone anatomical charts make it possible to observe accurate bone structures three-dimensionally. In addition, we saved the data as a PDF file and uploaded to an internet server so that we can freely download and readily observe 3D images of human bones at all times and all places with a tablet or a PC monitor.


Subject(s)
Imaging, Three-Dimensional , Radiation , Comprehension , Humans , Learning , Models, Anatomic
7.
Article in Japanese | MEDLINE | ID: mdl-32307367

ABSTRACT

In anatomical charts in conventional books, the pathways of nerve fibers are drawn in illustrations. Conversely, with diffusion tensor tractography (DTT), we can visually understand the trajectory of nerve fibers through color. We created a stereo color anatomical chart of the nerve fibers that can be used for magnetic resonance (MR) examination to diagnose the pathway of nerve fibers and that can be used to explain the results of MR examination to visually understand how nerve fiber information is transmitted from the frontal lobe, parietal lobe, occipital lobe, temporal lobe, cerebellar lobe, and cerebral cortex.


Subject(s)
Brain/diagnostic imaging , Diffusion Tensor Imaging , Magnetic Resonance Spectroscopy , Nerve Fibers , Temporal Lobe
SELECTION OF CITATIONS
SEARCH DETAIL
...