Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(6): 1616-1625, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38288761

ABSTRACT

Mechanosensitive proteins play a crucial role in a range of physiological processes, including hearing, tactile sensation and regulating blood flow. While previous work has demonstrated the mechanosensitivity of several proteins, the ability to apply precisely defined mechanical forces to cells in a consistent, replicable manner remains a significant challenge. In this work we present a novel 96-well plate-compatible plugin device for generating highly-controlled flow-based mechanical simulation of cells, which enables quantitative assessment of mechanosensitive protein function. The device is used to mechanically stimulate HEK 293T cells expressing the mechanosensitive protein GPR68, a G protein-coupled receptor. By assaying intracellular calcium levels during flow-based cell stimulation, we determine that GPR68 signalling is a function of the applied shear-force. As this approach is compatible with conventional cell culture plates and allows for simultaneous readout in a conventional fluorescence plate reader, this represents a valuable new tool to investigate mechanotransduction.


Subject(s)
Cell Culture Techniques , Mechanotransduction, Cellular , Mechanotransduction, Cellular/physiology , Receptors, G-Protein-Coupled/metabolism , Stress, Mechanical
2.
Lab Chip ; 23(10): 2447-2457, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37042175

ABSTRACT

Acoustofluidic devices are ideal for biomedical micromanipulation applications, with high biocompatibility and the ability to generate force gradients down to the scale of cells. However, complex and designed patterning at the microscale remains challenging. In this work we report an acoustofluidic approach to direct particles and cells within a structured surface in arbitrary configurations. Wells, trenches and cavities are embedded in this surface. Combined with a half-wavelength acoustic field, together these form an 'acoustic stencil' where arbitrary cell and particle arrangements can be reversibly generated. Here a bulk-wavemode lithium niobate resonator generates multiplexed parallel patterning via a multilayer resonant geometry, where cell-scale resolution is accomplished via structured sub-wavelength microfeatures. Uniquely, this permits simultaneous manipulation in a unidirectional, device-spanning single-node field across scalable ∼cm2 areas in a microfluidic device. This approach is demonstrated via patterning of 5, 10 and 15 µm particles and 293-F cells in a variety of arrangements, where these activities are enabling for a range of cell studies and tissue engineering applications via the generation of highly complex and designed acoustic patterns at the microscale.

3.
J Acoust Soc Am ; 150(3): 2030, 2021 09.
Article in English | MEDLINE | ID: mdl-34598640

ABSTRACT

Both the scarcity and environmental impact of disposable face masks, as in the COVID-19 pandemic, have instigated the recent development of reusable masks. Such face masks reduce transmission of infectious agents and particulates, but often impact a user's ability to be understood when materials, such as silicone or hard polymers, are used. In this work, we present a numerical optimisation approach to optimise waveguide topology, where a waveguide is used to transmit and direct sound from the interior of the mask volume to the outside air. This approach allows acoustic energy to be maximised according to specific frequency bands, including those most relevant to human speech. We employ this method to convert a resuscitator mask, made of silicone, into respiration personal protective equipment (PPE) that maximises the speech intelligibility index (SII). We validate this approach experimentally as well, showing improved SII when using the fabricated device. Together, this design represents a unique and effective approach to utilize and adapt available apparatus to filter air while improving the ability to communicate effectively, including in healthcare settings.


Subject(s)
COVID-19 , Speech Intelligibility , Humans , Masks , Pandemics , Respiration , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...