Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Am J Vet Res ; 85(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38325002

ABSTRACT

OBJECTIVE: This study aimed to characterize the bacterial and eukaryotic microbiota of the gastrointestinal (GI) tract in domestic rabbits and to evaluate the effect of different diet characteristics, such as pelleting, extrusion, and hay supplementation. ANIMALS: 30 New Zealand White rabbits (15 male and 15 female; 6 to 7 months old) were fed 1 of 6 diets (5 rabbits per diet) for 30 days after an initial acclimation period. At the end of the trial, samples were collected from the stomach, small intestine, cecum, large intestine, and hard feces. METHODS: The samples were analyzed using 16S rRNA and internal transcribed spacer 1 region-targeted amplicon sequencing. RESULTS: The bacterial microbiota was distinct between the foregut and hindgut. The most abundant bacterial genera included an unclassified genus in the Bacteroidales order and Alistipes. Candida was the most abundant genus in the eukaryotic dataset. In the bacterial dataset, diet No Hay/Pellet E was shown to have lower diversity (Shannon diversity, P < .05) compared to all diet groups except for No Hay/Pellet M. Few significant differences in alpha-diversity indexes between diet groups were detected in the eukaryotic dataset. CLINICAL RELEVANCE: Our findings demonstrated that feeding hay had a significant effect on the beta diversity of the bacterial microbiota. Given the prevalence of gastrointestinal disease in the domestic rabbit population, furthering our understanding of what constitutes a healthy rabbit microbiota and the effects of different diets on the microbial community can help veterinarians implement better intervention strategies and allow pet owners to provide the best level of care.


Subject(s)
Gastrointestinal Tract , Microbiota , Rabbits , Animals , Female , Male , RNA, Ribosomal, 16S/genetics , Diet/veterinary , Cecum , Bacteria/genetics , Animal Feed/analysis , Feces/microbiology
3.
Front Vet Sci ; 11: 1334858, 2024.
Article in English | MEDLINE | ID: mdl-38352039

ABSTRACT

Introduction: Brucella abortus is the causative agent of brucellosis in cattle and in humans, resulting in economic losses in the agricultural sector and representing a major threat to public health. Elk populations in the American Northwest are reservoirs for this bacterium and transmit the agent to domestic cattle herds. One potential strategy to mitigate the transmission of brucellosis by elk is vaccination of elk populations against B. abortus; however, elk appear to be immunologically distinct from cattle in their responses to current vaccination strategies. The differences in host response to B. abortus between cattle and elk could be attributed to differences between the cattle and elk innate and adaptive immune responses. Because species-specific interactions between the host microbiome and the immune system are also known to affect immunity, we sought to investigate interactions between the elk microbiome and B. abortus infection and vaccination. Methods: We analyzed the fecal and vaginal microbial communities of B. abortus-vaccinated and unvaccinated elk which were challenged with B. abortus during the periparturient period. Results: We observed that the elk fecal and vaginal microbiota are similar to those of other ruminants, and these microbial communities were affected both by time of sampling and by vaccination status. Notably, we observed that taxa representing ruminant reproductive tract pathogens tended to increase in abundance in the elk vaginal microbiome following parturition. Furthermore, many of these taxa differed significantly in abundance depending on vaccination status, indicating that vaccination against B. abortus affects the elk vaginal microbiota with potential implications for animal reproductive health. Discussion: This study is the first to analyze the vaginal microbiota of any species of the genus Cervus and is also the first to assess the effects of B. abortus vaccination and challenge on the vaginal microbiome.

4.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36511453

ABSTRACT

The effect of a saccharin-based artificial sweetener was tested on animal performance measures and on the microbial communities associated with the rumen content and with the rumen epithelium during heat stress. Ten cannulated Holstein-Friesian milking dairy cattle were supplemented with 2 g of saccharin-based sweetener per day, top-dressed into individual feeders for a 7-day adaptation period followed by a 14-day heat stress period. A control group of ten additional cows subjected to the same environmental conditions but not supplemented with sweetener were included for comparison. 16S rRNA gene amplicon sequencing was performed on rumen content and rumen epithelium samples from all animals, and comparisons of rumen content microbiota and rumen epithelial microbiota were made between supplemented and control populations. Supplementation of the saccharin-based sweetener did not affect the rumen content microbiota, but differences in the rumen epithelial microbiota beta-diversity (PERMANOVA, P = 0.003, R2 = 0.12) and alpha-diversity (Chao species richness, P = 0.06 and Shannon diversity, P = 0.034) were detected between the supplemented and control experimental groups. Despite the changes detected in the microbial community, animal performance metrics including feed intake, milk yield, and short-chain fatty acid (acetic, propionic, and butyric acid) concentrations were not different between experimental groups. Thus, under the conditions applied, supplementation with a saccharin-based sweetener does not appear to affect animal performance under heat stress. Additionally, we detected differences in the rumen epithelial microbiota due to heat stress when comparing initial, prestressed microbial communities to the communities after heat stress. Importantly, the changes occurring in the rumen epithelial microbiota may have implications on barrier integrity, oxygen scavenging, and urease activity. This research adds insight into the impact of saccharin-based sweeteners on the rumen microbiota and the responsivity of the rumen epithelial microbiota to different stimuli, providing novel hypotheses for future research.


Mitigating the effects of heat stress is becoming more and more important with global increases in temperatures. Heat stress negatively affects livestock health and performance. One way to mitigate the effects of heat stress on livestock is to increase feed intake during stress conditions by enhancing palatability of the feed by adding artificial sweeteners. In this study, we investigated whether supplementation of the diet with a saccharin-based sweetener affected dairy cattle performance and the rumen microbial communities during heat stress. We show that supplementation with a saccharin-based artificial sweetener did not affect the performance of the dairy cattle during heat stress. However, the sweetener resulted in changes in the rumen microbial communities, particularly of the microbial communities attached to the rumen wall. These changes in the rumen wall microbial communities could potentially have implications for the host animal, for example in the integrity of the rumen wall barrier function. Future research will be needed to better understand the role of artificial sweeteners in potentially mitigating stress conditions for livestock and to understand their potential effects on microbial communities.


Subject(s)
Diet , Microbiota , Female , Cattle , Animals , Diet/veterinary , Lactation , Saccharin , Sweetening Agents/pharmacology , Rumen/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Animal Feed/analysis , Milk , Epithelium , Sodium , Fermentation
5.
Front Microbiol ; 13: 1001139, 2022.
Article in English | MEDLINE | ID: mdl-36386708

ABSTRACT

Soft rot disease causes devastating losses to crop plants all over the world, with up to 90% loss in tropical climates. To better understand this economically important disease, we isolated four soft rot-causing Erwinia persicina strains from rotted vegetables. Notably, E. persicina has only recently been identified as a soft rot pathogen and a comprehensive genomic analysis and comparison has yet to be conducted. Here, we provide the first genomic analysis of E. persicina, compared to Pectobacterium carotovorum, P. carotovorum, and associated Erwinia plant pathogens. We found that E. persicina shares common genomic features with other Erwinia species and P. carotovorum, while having its own unique characteristics as well. The E. persicina strains examined here lack Type II and Type III secretion systems, commonly used to secrete pectolytic enzymes and evade the host immune response, respectively. E. persicina contains fewer putative pectolytic enzymes than P. carotovorum and lacks the Out cluster of the Type II secretion system while harboring a siderophore that causes a unique pink pigmentation during soft rot infections. Interestingly, a putative phenolic acid decarboxylase is present in the E. persicina strains and some soft rot pathogens, but absent in other Erwinia species, thus potentially providing an important factor for soft rot. All four E. persicina isolates obtained here and many other E. persicina genomes contain plasmids larger than 100 kbp that encode proteins likely important for adaptation to plant hosts. This research provides new insights into the possible mechanisms of soft rot disease by E. persicina and potential targets for diagnostic tools and control measures.

SELECTION OF CITATIONS
SEARCH DETAIL
...