Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Acta Neuropathol Commun ; 11(1): 124, 2023 07 27.
Article in English | MEDLINE | ID: mdl-37501103

ABSTRACT

To date, several studies on genomic events underlying medulloblastoma (MB) biology have expanded our understanding of this tumour entity and led to its division into four groups-WNT, SHH, group 3 (G3) and group 4 (G4). However, there is little information about the relevance of pathogenic mitochondrial DNA (mtDNA) mutations and their consequences across these. In this report, we describe the case of a female patient with MB and a mitochondriopathy, followed by a study of mtDNA variants in MB groups. After being diagnosed with G4 MB, the index patient was treated in line with the HIT 2000 protocol with no indications of relapse after five years. Long-term side effects of treatment were complemented by additional neurological symptoms and elevated lactate levels ten years later, resulting in suspected mitochondrial disease. This was confirmed by identifying a mutation in the MT-TS1 gene which appeared homoplasmic in patient tissue and heteroplasmic in the patient's mother. Motivated by this case, we explored mtDNA mutations across 444 patients from ICGC and HIT cohorts. While there was no statistically significant enrichment of mutations in one MB group, both cohorts encompassed a small group of patients harbouring potentially deleterious mtDNA variants. The case presented here highlights the possible similarities between sequelae caused by MB treatment and neurological symptoms of mitochondrial dysfunction, which may apply to patients across all MB groups. In the context of the current advances in characterising and interpreting mtDNA aberrations, recognising affected patients could enhance our future knowledge regarding the mutations' impact on carcinogenesis and cancer treatment.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Mitochondrial Diseases , Humans , Female , Medulloblastoma/genetics , Mutation/genetics , DNA, Mitochondrial/genetics , Cerebellar Neoplasms/genetics
2.
J Transl Med ; 21(1): 363, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37277823

ABSTRACT

BACKGROUND: Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients' outcomes. METHODS: Data from four independent MB cohorts encompassing 1,288 patients were analysed. We explored metabolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients (ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratumoral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. Findings on metabolic heterogeneity were correlated to clinical data. RESULTS: Established MB groups exhibit substantial differences in metabolic gene expression. By employing unsupervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol phosphates and nucleotides correlates with patient survival. CONCLUSION: Our research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/genetics , Cerebellar Neoplasms/genetics , Mutation , Phenotype , RNA
3.
Eur Urol ; 83(5): 452-462, 2023 05.
Article in English | MEDLINE | ID: mdl-35690514

ABSTRACT

BACKGROUND: Crypto- and azoospermia (very few/no sperm in the semen) are main contributors to male factor infertility. Genetic causes for spermatogenic failure (SPGF) include Klinefelter syndrome and Y-chromosomal azoospermia factor microdeletions, and CFTR mutations for obstructive azoospermia (OA). However, the majority of cases remain unexplained because monogenic causes are not analysed. OBJECTIVE: To elucidate the monogenic contribution to azoospermia by prospective exome sequencing and strict application of recent clinical guidelines. DESIGN, SETTING, AND PARTICIPANTS: Since January 2017, we studied crypto- and azoospermic men without chromosomal aberrations and Y-chromosomal microdeletions attending the Centre of Reproductive Medicine and Andrology, Münster. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We performed exome sequencing in 647 men, analysed 60 genes having at least previous limited clinical validity, and strictly assessed variants according to clinical guidelines. RESULTS AND LIMITATIONS: Overall, 55 patients (8.5%) with diagnostic genetic variants were identified. Of these patients, 20 (3.1%) carried mutations in CFTR or ADGRG2, and were diagnosed with OA. In 35 patients (5.4%) with SPGF, mutations in 20 different genes were identified. According to ClinGen criteria, 19 of the SPGF genes now reach at least moderate clinical validity. As limitations, only one transcript per gene was considered, and the list of genes is increasing rapidly so cannot be exhaustive. CONCLUSIONS: The number of diagnostic genes in crypto-/azoospermia was almost doubled to 21 using exome-based analyses and clinical guidelines. Application of this procedure in routine diagnostics will significantly improve the diagnostic yield and clinical workup as the results indicate the success rate of testicular sperm extraction. PATIENT SUMMARY: When no sperm are found in the semen, a man cannot conceive naturally. The causes are often unknown, but genetics play a major role. We searched for genetic variants in a large group of patients and found causal mutations for one in 12 men; these predict the chances for fatherhood.


Subject(s)
Azoospermia , Infertility, Male , Humans , Male , Azoospermia/genetics , Azoospermia/complications , Azoospermia/diagnosis , Prospective Studies , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Standard of Care , Infertility, Male/diagnosis , Infertility, Male/genetics , Testis
6.
Blood ; 137(17): 2347-2359, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33152759

ABSTRACT

T-cell lymphoblastic lymphoma (T-LBL) is a heterogeneous malignancy of lymphoblasts committed to T-cell lineage. The dismal outcomes (15%-30%) after T-LBL relapse warrant establishing risk-based treatment. To our knowledge, this study presents the first comprehensive, systematic, integrated, genome-wide analysis including relapsed cases that identifies molecular markers of prognostic relevance for T-LBL. NOTCH1 was identified as the putative driver for T-LBL. An activated NOTCH/PI3K-AKT signaling axis and alterations in cell cycle regulators constitute the core oncogenic program for T-LBL. Mutated KMT2D was identified as a prognostic marker. The cumulative incidence of relapse was 47% ± 17% in patients with KMT2D mutations, compared with 14% ± 3% in wild-type KMT2D. Structural analysis of the mutated domains of KMT2D revealed a plausible impact on structure and functional consequences. These findings provide new insights into the pathogenesis of T-LBL, including high translational potential. The ongoing LBL 2018 trial (www.clinicaltrials.gov #NCT04043494) allows for prospective validation and subsequent fine tuning of the stratification criteria for T-LBL risk groups to improve survival of pediatric patients.


Subject(s)
Biomarkers, Tumor/genetics , DNA-Binding Proteins/genetics , Genomics/methods , Neoplasm Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proto-Oncogene Proteins c-akt/genetics , Receptor, Notch1/genetics , Adolescent , Child , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Genome, Human , Humans , Male , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Survival Rate
7.
Sci Rep ; 9(1): 4300, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30862860

ABSTRACT

Serotonin 5-HT2C receptor is a G-protein coupled excitatory receptor that regulates several biochemical pathways and has been implicated in obesity, mental state, sleep cycles, autism, neuropsychiatric disorders and neurodegenerative diseases. The activity of 5-HT2CR is regulated via alternative splicing and A to I editing of exon Vb of its pre-mRNA. Snord115 is a small nucleolar RNA that is expressed in mouse neurons and displays an 18-nucleotide base complementary to exon Vb of 5-HT2CR pre-mRNA. For almost two decades this putative guide element of Snord115 has wandered like a ghost through the literature in attempts to elucidate the biological significance of this complementarity. In mice, Snord115 is expressed in neurons and absent in the choroid plexus where, in contrast, 5-Ht2cr mRNA is highly abundant. Here we report the analysis of 5-Ht2cr pre-mRNA posttranscriptional processing via RNA deep sequencing in a mouse model that ectopically expresses Snord115 in the choroid plexus. In contrast to previous reports, our analysis demonstrated that Snord115 does not control alternative splicing of 5-Ht2cr pre-mRNA in vivo. We identified a modest, yet statistically significant reduction of 5-Ht2cr pre-mRNA A to I editing at the major A, B, C and D sites. We suggest that Snord115 and exon Vb of 5Ht2cr pre-mRNA form a double-stranded structure that is subject to ADAR-mediated A to I editing. To the best of our knowledge, this is the first comprehensive Snord115 gain-of-function analysis based on in vivo mouse models.


Subject(s)
RNA, Small Nucleolar/metabolism , Alternative Splicing/genetics , Alternative Splicing/physiology , Animals , Choroid Plexus/metabolism , Female , Genotype , Male , Mice , Mice, Mutant Strains , RNA Editing/genetics , RNA Editing/physiology , RNA Splicing/genetics , RNA Splicing/physiology , RNA, Small Nucleolar/genetics
8.
Int J Mol Sci ; 19(12)2018 Dec 06.
Article in English | MEDLINE | ID: mdl-30563222

ABSTRACT

One of the still open questions in Ewing sarcoma, a rare bone tumor with weak therapeutic options, is to identify the tumor-driving cell (sub) population and to understand the specifics in the biological network of these cells. This basic scientific insight might foster the development of more specific therapeutic target patterns. The experimental approach is based on a side population (SP) of Ewing cells, based on the model cell line CADO-ES1. The SP is established by flow cytometry and defined by the idea that tumor stem-like cells can be identified by the time-course in clearing a given artificial dye. The SP was characterized by a higher colony forming activity, by a higher differentiation potential, by higher resistance to cytotoxic drugs, and by morphology. Several SP and non-SP cell fractions and bone marrow-derived mesenchymal stem cell reference were analyzed by short read sequencing of the full transcriptome. The double-differential analysis leads to an altered expression structure of SP cells centered around the AP-1 and APC/c complex. The SP cells share only a limited proportion of the full mesenchymal stem cell stemness set of genes. This is in line with the expectation that tumor stem-like cells share only a limited subset of stemness features which are relevant for tumor survival.


Subject(s)
Bone Neoplasms/genetics , Gene Expression Profiling/methods , Neoplastic Stem Cells/metabolism , Sarcoma, Ewing/genetics , Side-Population Cells/metabolism , Bone Neoplasms/metabolism , Cell Differentiation , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Epigenesis, Genetic , Flow Cytometry , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Sarcoma, Ewing/metabolism , Sequence Analysis, RNA
9.
Front Microbiol ; 9: 1863, 2018.
Article in English | MEDLINE | ID: mdl-30154773

ABSTRACT

Staphylococcal small-colony variants (SCVs) are invasive and persistent due to their ability to thrive intracellularly and to evade the host immune response. Thus, the course of infections due to this phenotype is often chronic, relapsing, and therapy-refractory. In order to improve treatment of patients suffering from SCV-associated infections, it is of major interest to understand triggers for the development of this phenotype, in particular for strains naturally occurring in clinical settings. Within this study, we comprehensively characterized two different Staphylococcus aureus triplets each consisting of isogenic strains comprising (i) clinically derived SCV phenotypes with auxotrophy for unsaturated fatty acids, (ii) the corresponding wild-types (WTs), and (iii) spontaneous in vitro revertants displaying the normal phenotype (REVs). Comparison of whole genomes revealed that clinical SCV isolates were closely related to their corresponding WTs and REVs showing only seven to eight alterations per genome triplet. However, both SCVs carried a mutation within the energy-coupling factor (ECF) transporter-encoding ecf module (EcfAA'T) resulting in truncated genes. In both cases, these mutations were shown to be naturally restored in the respective REVs. Since ECF transporters are supposed to be essential for optimal bacterial growth, their dysfunction might constitute another mechanism for the formation of naturally occurring SCVs. Another three triplets analyzed revealed neither mutations in the EcfAA'T nor in other FASII-related genes underlining the high diversity of mechanisms leading to the fatty acid-dependent phenotype. This is the first report on the ECF transporter as genetic basis of fatty acid-auxotrophic staphylococcal SCVs.

10.
PLoS One ; 13(1): e0191570, 2018.
Article in English | MEDLINE | ID: mdl-29385199

ABSTRACT

In the search for novel therapeutic targets, RNA interference screening has become a valuable tool. High-throughput technologies are now broadly accessible but their assay development from baseline remains resource-intensive and challenging. Focusing on this assay development process, we here describe a target discovery screen using pooled shRNA libraries and next-generation sequencing (NGS) deconvolution in a cell line model of Ewing sarcoma. In a strategy designed for comparative and synthetic lethal studies, we screened for targets specific to the A673 Ewing sarcoma cell line. Methods, results and pitfalls are described for the entire multi-step screening procedure, from lentiviral shRNA delivery to bioinformatics analysis, illustrating a complete model workflow. We demonstrate that successful studies are feasible from the first assay performance and independent of specialized screening units. Furthermore, we show that a resource-saving screen depth of 100-fold average shRNA representation can suffice to generate reproducible target hits despite heterogeneity in the derived datasets. Because statistical analysis methods are debatable for such datasets, we created ProFED, an analysis package designed to facilitate descriptive data analysis and hit calling using an aim-oriented profile filtering approach. In its versatile design, this open-source online tool provides fast and easy analysis of shRNA and other count-based datasets to complement other analytical algorithms.


Subject(s)
Drug Discovery/methods , Drug Evaluation, Preclinical/methods , Gene Library , RNA, Small Interfering/genetics , Algorithms , Cell Line, Tumor , Computational Biology , HEK293 Cells , High-Throughput Nucleotide Sequencing , Humans , Lentivirus/genetics , RNA Interference , Sarcoma, Ewing/drug therapy , Sarcoma, Ewing/genetics , Sequence Analysis, RNA , Workflow
11.
Emerg Infect Dis ; 24(2): 242-248, 2018 02.
Article in English | MEDLINE | ID: mdl-29350135

ABSTRACT

During cefoxitin-based nasal screening, phenotypically categorized methicillin-resistant Staphylococcus aureus (MRSA) was isolated and tested negative for the presence of the mecA and mecC genes as well as for the SCCmec-orfX junction region. The isolate was found to carry a mecB gene previously described for Macrococcus caseolyticus but not for staphylococcal species. The gene is flanked by ß-lactam regulatory genes similar to mecR, mecI, and blaZ and is part of an 84.6-kb multidrug-resistance plasmid that harbors genes encoding additional resistances to aminoglycosides (aacA-aphD, aphA, and aadK) as well as macrolides (ermB) and tetracyclines (tetS). This further plasmidborne ß-lactam resistance mechanism harbors the putative risk of acceleration or reacceleration of MRSA spread, resulting in broad ineffectiveness of ß-lactams as a main therapeutic application against staphylococcal infections.


Subject(s)
Bacterial Proteins/genetics , Methicillin Resistance/genetics , Methicillin-Resistant Staphylococcus aureus/genetics , Plasmids/genetics , Aged , Gene Transfer, Horizontal , Humans , Male
12.
Dev Cell ; 43(6): 704-715.e5, 2017 12 18.
Article in English | MEDLINE | ID: mdl-29257950

ABSTRACT

Maintaining cell fate relies on robust mechanisms that prevent the differentiation of specified cells into other cell types. This is especially critical during embryogenesis, when extensive cell proliferation, patterning, and migration events take place. Here we show that vertebrate primordial germ cells (PGCs) are protected from reprogramming into other cell types by the RNA-binding protein Dead end (Dnd). PGCs knocked down for Dnd lose their characteristic morphology and adopt various somatic cell fates. Concomitantly, they gain a gene expression profile reflecting differentiation into cells of different germ layers, in a process that we could direct by expression of specific cell-fate determinants. Importantly, we visualized these events within live zebrafish embryos, which provide temporal information regarding cell reprogramming. Our results shed light on the mechanisms controlling germ cell fate maintenance and are relevant for the formation of teratoma, a tumor class composed of cells from more than one germ layer.


Subject(s)
Cell Differentiation/physiology , RNA-Binding Proteins/metabolism , Zebrafish Proteins/metabolism , Animals , Cell Differentiation/genetics , Cell Movement , Cellular Reprogramming Techniques/methods , Endoderm/physiology , Germ Cells/metabolism , Germ Cells/physiology , In Situ Hybridization , RNA-Binding Proteins/genetics , RNA-Binding Proteins/physiology , Zebrafish/metabolism , Zebrafish Proteins/genetics , Zebrafish Proteins/physiology
13.
PLoS One ; 12(9): e0184656, 2017.
Article in English | MEDLINE | ID: mdl-28926584

ABSTRACT

Worldwide, more than 1 billion people are affected by infestations with soil-transmitted helminths and also in veterinary medicine helminthiases are a severe threat to livestock due to emerging resistances against the common anthelmintics. Proanthocyanidins have been increasingly investigated for their anthelmintic properties, however, except for an interaction with certain proteins of the nematodes, not much is known about their mode of action. To investigate the anthelmintic activity on a molecular level, a transcriptome analysis was performed in Caenorhabditis elegans after treatment with purified and fully characterized oligomeric procyanidins (OPC). The OPCs had previously been obtained from a hydro-ethanolic (1:1) extract from the leaves of Combretum mucronatum, a plant which is traditionally used in West Africa for the treatment of helminthiasis, therefore, also the crude extract was included in the study. Significant changes in differential gene expression were observed mainly for proteins related to the intestine, many of which were located extracellularly or within cellular membranes. Among the up-regulated genes, several hitherto undescribed orthologues of structural proteins in humans were identified, but also genes that are potentially involved in the worms' defense against tannins. For example, T22D1.2, an orthologue of human basic salivary proline-rich protein (PRB) 2, and numr-1 (nuclear localized metal responsive) were found to be strongly up-regulated. Down-regulated genes were mainly associated with lysosomal activity, glycoside hydrolysis or the worms' innate immune response. No major differences were found between the groups treated with purified OPCs versus the crude extract. Investigations using GFP reporter gene constructs of T22D1.2 and numr-1 corroborated the intestine as the predominant site of the anthelmintic activity. The current findings support previous hypotheses of OPCs interacting with intestinal surface proteins and provide the first insights into the nematode's response to OPCs on a molecular level as a base for the identification of future drug targets.


Subject(s)
Anthelmintics/pharmacology , Caenorhabditis elegans/genetics , Down-Regulation/drug effects , Proanthocyanidins/pharmacology , Up-Regulation/drug effects , Animals , Anthelmintics/isolation & purification , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Combretum/chemistry , Combretum/metabolism , Gene Expression Profiling , Genes, Reporter , Microscopy, Fluorescence , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism , Proanthocyanidins/isolation & purification , RNA/isolation & purification , RNA/metabolism , Real-Time Polymerase Chain Reaction , Salivary Proline-Rich Proteins/genetics , Salivary Proline-Rich Proteins/metabolism
14.
J Am Soc Nephrol ; 28(7): 2093-2107, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28154200

ABSTRACT

The nephron is the basic physiologic subunit of the mammalian kidney and is made up of several apicobasally polarized epithelial cell types. The process of apicobasal polarization in animal cells is controlled by the evolutionarily conserved Crumbs (CRB), Partitioning-defective, and Scribble protein complexes. Here, we investigated the role of protein associated with LIN-7 1 (Pals1, also known as Mpp5), a core component of the apical membrane-determining CRB complex in the nephron. Pals1 interacting proteins, including Crb3 and Wwtr1/Taz, have been linked to renal cyst formation in mice before. Immunohistologic analysis revealed Pals1 expression in renal tubular cells and podocytes of human kidneys. Mice lacking one Pals1 allele (functionally haploid for Pals1) in nephrons developed a fully penetrant phenotype, characterized by cyst formation and severe defects in renal barrier function, which led to death within 6-8 weeks. In Drosophila nephrocytes, deficiency of the Pals1 ortholog caused alterations in slit-diaphragm-like structures. Additional studies in epithelial cell culture models revealed that Pals1 functions as a dose-dependent upstream regulator of the crosstalk between Hippo- and TGF-ß-mediated signaling. Furthermore, Pals1 haploinsufficiency in mouse kidneys associated with the upregulation of Hippo pathway target genes and marker genes of TGF-ß signaling, including biomarkers of renal diseases. These findings support a link between apical polarity proteins and renal diseases, especially renal cyst diseases. Further investigation of the Pals1-linked networks is required to decipher the mechanisms underlying the pathogenesis of these diseases.


Subject(s)
Haploinsufficiency , Kidney Diseases, Cystic/genetics , Membrane Proteins/genetics , Nucleoside-Phosphate Kinase/genetics , Proteinuria/genetics , Animals , Drosophila , Female , Male , Mice
15.
Anesth Analg ; 124(3): 836-845, 2017 03.
Article in English | MEDLINE | ID: mdl-27655274

ABSTRACT

BACKGROUND: Procalcitonin is used as a diagnostic tool for the identification and risk stratification of septic patients. Procalcitonin plasma concentrations tightly correlate with the severity of the ongoing inflammatory reaction and can rise up to 10,000-fold. Impairment of endothelial cell function plays an important role in the pathogenesis of hypotension and disturbed organ perfusion during sepsis. We investigated the possible effects of procalcitonin itself on endothelial cell function and viability. METHODS: Human endothelial cells were exposed to 0.01 to 100 ng/mL procalcitonin and investigated for endothelial permeability using transwells, migration in a scratch wound assay and new capillary formation on extracellular matrix in vitro. Tumor necrosis factor-α and vascular endothelial growth factor served as positive controls. Procalcitonin's impact on the response of endothelial cells toward ischemia was investigated in vivo in the murine model of unilateral femoral artery ligation. Procalcitonin-exposed endothelial cells were subjected to immunoblot for the investigation of vascular endothelial-cadherin expression and angiogenic signaling pathways. Flow cytometry was used for the detection of inflammatory activation and viability, and genomic analysis was performed. Data are presented as difference in means and 95% confidence intervals; statistical analyses were performed using analysis of variance/Bonferroni, and P values are reported as adjusted for multiple comparisons (Padjust). RESULTS: Tumor necrosis factor-α and 0.1 ng/mL procalcitonin induced endothelial barrier disruption after incubation of endothelial monolayers for 6 hours (-2.53 [-4.16 to -0.89], P = .0008 and -2.09 [-3.73 to -0.45], Padjust = .0064 compared with vehicle-treated control, respectively). Procalcitonin beginning at concentrations of 0.02 ng/mL reduced endothelial cell migration (0.26 [0.06 to 0.47], Padjust = .0069) and new capillary formation in vitro (0.47 [0.28 to 0.66], Padjust < .0001) contrasting the proangiogenic action of vascular endothelial growth factor. Left ventricular injection of procalcitonin in mice on postoperative day 1, 3, and 5 after induction of ischemia impaired new capillary formation and recovery of hindlimb perfusion in vivo (number of capillaries/mm in the ischemic leg of vehicle-treated versus procalcitonin-treated mice, 852.6 [383.4-1322], Padjust = .0002). Twenty-four-hour incubation with procalcitonin reduced the expression of vascular endothelial-cadherin at 100 ng/mL (0.39 [0.06-0.71], Padjust = .0167) and induced endothelial cell death (apoptosis, -5.4 [-10.67 to -0.13], Padjust = .0431). No alteration in the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1 or extracellular signal-regulated kinase 1/2, and AKT signaling pathways was observed. Genomic analysis revealed regulation of a variety of genes involved in inflammation, angiogenesis, and cell growth. CONCLUSIONS: This study found that procalcitonin itself impaired several aspects of endothelial cell function. Procalcitonin-induced loss of endothelial barrier function may contribute to capillary leakage and therapy-refractory hypotension during sepsis. Anti-angiogenic properties of procalcitonin at low concentrations could also identify procalcitonin as a mediator of vascular disease associated with the metabolic syndrome. Future studies are needed to further test procalcitonin as a potential therapeutic target for preserving vascular dysfunction during acute and chronic inflammatory disorders.


Subject(s)
Apoptosis/drug effects , Apoptosis/physiology , Calcitonin/toxicity , Endothelial Cells/drug effects , Endothelial Cells/physiology , Animals , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/physiology , Humans , Ischemia/chemically induced , Ischemia/pathology , Male , Mice , Mice, Inbred C57BL
16.
PLoS One ; 10(12): e0143993, 2015.
Article in English | MEDLINE | ID: mdl-26657485

ABSTRACT

MicroRNAs (miRNAs, micro ribonucleic acids) are pivotal post-transcriptional regulators of gene expression. These endogenous small non-coding RNAs play significant roles in tumorigenesis and tumor progression. miR-142-3p expression is dysregulated in several breast cancer subtypes. We aimed at investigating the role of miR-142-3p in breast cancer cell invasiveness. Supported by transcriptomic Affymetrix array analysis and confirmatory investigations at the mRNA and protein level, we demonstrate that overexpression of miR-142-3p in MDA-MB-231, MDA-MB-468 and MCF-7 breast cancer cells leads to downregulation of WASL (Wiskott-Aldrich syndrome-like, protein: N-WASP), Integrin-αV, RAC1, and CFL2, molecules implicated in cytoskeletal regulation and cell motility. ROCK2, IL6ST, KLF4, PGRMC2 and ADCY9 were identified as additional targets in a subset of cell lines. Decreased Matrigel invasiveness was associated with the miR-142-3p-induced expression changes. Confocal immunofluorescence microscopy, nanoscale atomic force microscopy and digital holographic microscopy revealed a change in cell morphology as well as a reduced cell volume and size. A more cortical actin distribution and a loss of membrane protrusions were observed in cells overexpressing miR-142-3p. Luciferase activation assays confirmed direct miR-142-3p-dependent regulation of the 3'-untranslated region of ITGAV and WASL. siRNA-mediated depletion of ITGAV and WASL resulted in a significant reduction of cellular invasiveness, highlighting the contribution of these factors to the miRNA-dependent invasion phenotype. While knockdown of WASL significantly reduced the number of membrane protrusions compared to controls, knockdown of ITGAV resulted in a decreased cell volume, indicating differential contributions of these factors to the miR-142-3p-induced phenotype. Our data identify WASL, ITGAV and several additional cytoskeleton-associated molecules as novel invasion-promoting targets of miR-142-3p in breast cancer.


Subject(s)
Cytoskeleton/metabolism , Integrin alphaV/metabolism , MicroRNAs/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , 3' Untranslated Regions , Actins/metabolism , Base Sequence , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Size , Down-Regulation , Female , Humans , Integrin alphaV/chemistry , Integrin alphaV/genetics , Kruppel-Like Factor 4 , MCF-7 Cells , MicroRNAs/chemistry , MicroRNAs/genetics , RNA Interference , RNA, Small Interfering/metabolism , Sequence Alignment , Wiskott-Aldrich Syndrome Protein, Neuronal/antagonists & inhibitors , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics
17.
PLoS One ; 10(11): e0143755, 2015.
Article in English | MEDLINE | ID: mdl-26606261

ABSTRACT

BACKGROUND: No reliable predictors of susceptibility to gemcitabine chemotherapy exist in pancreatic ductal adenocarcinoma (PDAC). MicroRNAs (miR) are epigenetic gene regulators with tumorsuppressive or oncogenic roles in various carcinomas. This study assesses chemoresistant PDAC for its specific miR expression pattern. METHODS: Gemcitabine-resistant variants of two mutant p53 human PDAC cell lines were established. Survival rates were analyzed by cytotoxicity and apoptosis assays. Expression of 1733 human miRs was investigated by microarray and validated by qRT-PCR. After in-silico analysis of specific target genes and proteins of dysregulated miRs, expression of MRP-1, Bcl-2, mutant p53, and CDK1 was quantified by Western blot. RESULTS: Both established PDAC clones showed a significant resistance to gemcitabine (p<0.02) with low apoptosis rate (p<0.001) vs. parental cells. MiR-screening revealed significantly upregulated (miR-21, miR-99a, miR-100, miR-125b, miR-138, miR-210) and downregulated miRs (miR-31*, miR-330, miR-378) in chemoresistant PDAC (p<0.05). Bioinformatic analysis suggested involvement of these miRs in pathways controlling cell death and cycle. MRP-1 (p<0.02) and Bcl-2 (p<0.003) were significantly overexpressed in both resistant cell clones and mutant p53 (p = 0.023) in one clone. CONCLUSION: Consistent miR expression profiles, in part regulated by mutant TP53 gene, were identified in gemcitabine-resistant PDAC with significant MRP-1 and Bcl-2 overexpression. These results provide a basis for further elucidation of chemoresistance mechanisms and therapeutic approaches to overcome chemoresistance in PDAC.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Carcinoma, Pancreatic Ductal/genetics , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , Genes, p53 , MicroRNAs/genetics , Mutation , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Cell Line, Tumor , Cluster Analysis , Computational Biology/methods , Deoxycytidine/pharmacology , Gene Expression Profiling , Humans , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , RNA Interference , RNA, Messenger/genetics , Reproducibility of Results , Gemcitabine , Pancreatic Neoplasms
19.
mBio ; 5(4): e01447-14, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25073642

ABSTRACT

Staphylococcus aureus thymidine-dependent small-colony variants (TD-SCVs) are frequently isolated from patients with chronic S. aureus infections after long-term treatment with trimethoprim-sulfamethoxazole (TMP-SMX). While it has been shown that TD-SCVs were associated with mutations in thymidylate synthase (TS; thyA), the impact of such mutations on protein function is lacking. In this study, we showed that mutations in thyA were leading to inactivity of TS proteins, and TS inactivity led to tremendous impact on S. aureus physiology and virulence. Whole DNA microarray analysis of the constructed ΔthyA mutant identified severe alterations compared to the wild type. Important virulence regulators (agr, arlRS, sarA) and major virulence determinants (hla, hlb, sspAB, and geh) were downregulated, while genes important for colonization (fnbA, fnbB, spa, clfB, sdrC, and sdrD) were upregulated. The expression of genes involved in pyrimidine and purine metabolism and nucleotide interconversion changed significantly. NupC was identified as a major nucleoside transporter, which supported growth of the mutant during TMP-SMX exposure by uptake of extracellular thymidine. The ΔthyA mutant was strongly attenuated in virulence models, including a Caenorhabditis elegans killing model and an acute pneumonia mouse model. This study identified inactivation of TS as the molecular basis of clinical TD-SCV and showed that thyA activity has a major role for S. aureus virulence and physiology. Importance: Thymidine-dependent small-colony variants (TD-SCVs) of Staphylococcus aureus carry mutations in the thymidylate synthase (TS) gene (thyA) responsible for de novo synthesis of thymidylate, which is essential for DNA synthesis. TD-SCVs have been isolated from patients treated for long periods with trimethoprim-sulfamethoxazole (TMP-SMX) and are associated with chronic and recurrent infections. In the era of community-associated methicillin-resistant S. aureus, the therapeutic use of TMP-SMX is increasing. Today, the emergence of TD-SCVs is still underestimated due to misidentification in the diagnostic laboratory. This study showed for the first time that mutational inactivation of TS is the molecular basis for the TD-SCV phenotype and that TS inactivation has a strong impact on S. aureus virulence and physiology. Our study helps to understand the clinical nature of TD-SCVs, which emerge frequently once patients are treated with TMP-SMX.


Subject(s)
Bacterial Proteins/metabolism , Staphylococcal Infections/metabolism , Staphylococcus aureus/metabolism , Staphylococcus aureus/pathogenicity , Animals , Bacterial Proteins/genetics , Male , Mice , Pneumonia/genetics , Pneumonia/metabolism , Pneumonia/microbiology , Staphylococcal Infections/genetics , Staphylococcus aureus/genetics , Virulence
20.
Proc Natl Acad Sci U S A ; 111(31): 11389-94, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-25049415

ABSTRACT

The control over the acquisition of cell motility is central for a variety of biological processes in development, homeostasis, and disease. An attractive in vivo model for investigating the regulation of migration initiation is that of primordial germ cells (PGCs) in zebrafish embryos. In this study, we show that, following PGC specification, the cells can polarize but do not migrate before the time chemokine-encoded directional cues are established. We found that the regulator of G-protein signaling 14a protein, whose RNA is a newly identified germ plasm component, regulates the temporal relations between the appearance of the guidance molecules and the acquisition of cellular motility by regulating E-cadherin levels.


Subject(s)
Cell Movement , RGS Proteins/metabolism , Signal Transduction , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Cadherins/metabolism , Cell Movement/genetics , Cell Polarity/genetics , Gene Expression Regulation, Developmental , Germ Cells/cytology , Germ Cells/metabolism , RGS Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/genetics , Time Factors , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...