Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 126(36): 6091-6109, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36044372

ABSTRACT

Sulfenic acids are important intermediates in the oxidation of cysteine thiol groups in proteins by reactive oxygen species. The mechanism is influenced heavily by the presence of polar groups, other thiol groups, and solvent, all of which determines the need to compute precisely the energies involved in the process. Surprisingly, very scarce experimental information exists about a very basic property of sulfenic acids, the enthalpies of formation. In this Article, we use high level quantum chemical methods to derive the enthalpy of formation at 298.15 K of methane-, ethene-, ethyne-, and benzenesulfenic acids, the only ones for which some experimental information exists. The methods employed were tested against well-known experimental data of related species and extensive CCSD(T) calculations. Our best results consistently point out to a much lower enthalpy of formation of methanesulfenic acid, CH3SOH (ΔfH0(298.15K) = -35.1 ± 0.4 kcal mol-1), than the one reported in the NIST thermochemical data tables. The enthalpies of formation derived for ethynesulfenic acid, HC≡CSOH, +32.9 ± 1.0 kcal/mol, and benzenesulfenic acid, C6H5SOH, -2.6 ± 0.6 kcal mol-1, also differ markedly from the experimental values, while the enthalpy of formation of ethenesulfenic acid CH2CHSOH, not available experimentally, was calculated as -11.2 ± 0.7 kcal mol-1.


Subject(s)
Cysteine , Sulfenic Acids , Cysteine/chemistry , Proteins , Sulfenic Acids/metabolism , Sulfhydryl Compounds/chemistry , Thermodynamics
2.
J Org Chem ; 86(3): 2941-2956, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33501826

ABSTRACT

Thione S-methylide, parent species of the thiocarbonyl ylide family, is a 1,3-dipolar species on the [C2SH4] potential energy surface, not so much studied as its isomers, thiirane, vinyl thiol, and thioacetaldehyde. The conrotatory ring-closure reaction toward thiirane was studied in the 90s, but no complete analysis of the potential energy surface is available. In this paper, we report a computational study of the reaction scheme linking all species. We employed several computational methods (density functional theory, CCSD(T) composite schemes, and CASSCF/CASPT2 multireference procedures) to find the best description of thione S-methylide, its isomers, and transition states. The barrier from thiirane to thione S-methylide amounts to 52.2 kcal mol-1 (against 17.6 kcal mol-1 for the direct one), explaining why thiocarbonyl ylides cannot be prepared from thiiranes. Conversion of thiirane to vinyl thiol implies a large barrier, supporting why the reaction has been observed only at high temperatures. Fragmentations of thiirane to S(3P) or S(1D) and ethylene as well as decomposition to hydrogen sulfide plus acetylene were also explored. Triplet and singlet open-shell species were identified as intermediates in the fragmentations, with energies lower than the transition state between thiirane and vinyl thiol, explaining the preference of the latter at low temperatures.

3.
J Phys Chem A ; 124(28): 5917-5930, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32543200

ABSTRACT

In a previous work, we have investigated the initial steps of the reaction of toluene with the hydroxyl radical using several quantum chemical approaches including density functional and composite post-Hartree-Fock models. Comparison of H-abstraction from the methyl group and additions at different positions of the phenyl ring showed that the former reaction channel is favored at room temperature. This conclusion appears at first sight incompatible with the experimental observation of a lower abundance of the product obtained from abstraction (benzaldehyde) with respect to those originating from addition (cresols). Further reactions of the intermediate radicals with oxygen, water, and additional OH radicals are explored in this paper through theoretical calculations on more than 120 species on the corresponding potential energy surface. The study of the addition reactions, to obtain the cresols through hydroxy methylcyclodienyl intermediate radicals, showed that only in the case of o-cresol the reaction proceeds by addition of O2 to the ring, internal H-transfer, and hydroperoxyl abstraction and not through direct H-abstraction. For both p- and m-cresol, instead, the reaction occurs through a higher-energy direct H-abstraction, thus explaining in part the observed larger concentration of the ortho isomer in the final products. It was also found that the benzyl radical, formed by H-abstraction from the methyl group, is able to react further if additional OH is present. Two reaction paths leading to o-cresol, two leading to p-cresol, and one leading to m-cresol were determined. Moreover, in this situation, the benzyl radical is predicted to produce benzyl alcohol, as was found in some experiments. The commonly accepted route to benzaldehyde was found to be not the energetically favored one. Instead, a route leading to the benzoyl radical (and ultimately to benzoic acid) with the participation of one water molecule was clearly more favorable, both thermodynamically and kinetically.

SELECTION OF CITATIONS
SEARCH DETAIL
...