Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Nutr ; 129(1): 87-103, 2023 01 14.
Article in English | MEDLINE | ID: mdl-35260210

ABSTRACT

Inflammation and infections such as malaria affect estimates of micronutrient status. Medline, Embase, Web of Science, Scopus and the Cochrane library were searched to identify studies reporting mean concentrations of ferritin, hepcidin, retinol or retinol binding protein in individuals with asymptomatic or clinical malaria and healthy controls. Study quality was assessed using the US National Institute of Health tool. Random effects meta-analyses were used to generate summary mean differences. In total, forty-four studies were included. Mean ferritin concentrations were elevated by: 28·2 µg/l (95 % CI 15·6, 40·9) in children with asymptomatic malaria; 28·5 µg/l (95 % CI 8·1, 48·8) in adults with asymptomatic malaria; and 366 µg/l (95 % CI 162, 570) in children with clinical malaria compared with individuals without malaria infection. Mean hepcidin concentrations were elevated by 1·52 nmol/l (95 % CI 0·92, 2·11) in children with asymptomatic malaria. Mean retinol concentrations were reduced by: 0·11 µmol/l (95 % CI -0·22, -0·01) in children with asymptomatic malaria; 0·43 µmol/l (95 % CI -0·71, -0·16) in children with clinical malaria and 0·73 µmol/l (95 % CI -1·11, -0·36) in adults with clinical malaria. Most of these results were stable in sensitivity analyses. In children with clinical malaria and pregnant women, difference in ferritin concentrations were greater in areas with higher transmission intensity. We conclude that biomarkers of iron and vitamin A status should be statistically adjusted for malaria and the severity of infection. Several studies analysing asymptomatic infections reported elevated ferritin concentrations without noticeable elevation of inflammation markers, indicating a need to adjust for malaria status in addition to inflammation adjustments.


Subject(s)
Anemia, Iron-Deficiency , Malaria , Vitamin A Deficiency , Child , Adult , Humans , Female , Pregnancy , Iron , Vitamin A , Hepcidins , Vitamin A Deficiency/complications , Nutritional Status , Malaria/complications , Ferritins , Inflammation
2.
Ann N Y Acad Sci ; 1508(1): 105-122, 2022 02.
Article in English | MEDLINE | ID: mdl-34580873

ABSTRACT

Large-scale food fortification may be a cost-effective intervention to increase micronutrient supplies in the food system when implemented under appropriate conditions, yet it is unclear if current strategies can equitably benefit populations with the greatest micronutrient needs. This study developed a mathematical modeling framework for comparing fortification scenarios across different contexts. It was applied to model the potential contributions of three fortification vehicles (oil, sugar, and wheat flour) toward meeting dietary micronutrient requirements in Malawi through secondary data analyses of a Household Consumption and Expenditure Survey. We estimated fortification vehicle coverage, micronutrient density of the diet, and apparent intake of nonpregnant, nonlactating women for nine different micronutrients, under three food fortification scenarios and stratified by subpopulations across seasons. Oil and sugar had high coverage and apparent consumption that, when combined, were predicted to improve the vitamin A adequacy of the diet. Wheat flour contributed little to estimated dietary micronutrient supplies due to low apparent consumption. Potential contributions of all fortification vehicles were low in rural populations of the lowest socioeconomic position. While the model predicted large-scale food fortification would contribute to reducing vitamin A inadequacies, other interventions are necessary to meet other micronutrient requirements, especially for the rural poor.


Subject(s)
Food, Fortified , Micronutrients , Models, Biological , Nutritional Requirements , Rural Population , Female , Humans , Malawi , Male
3.
Front Nutr ; 8: 788096, 2021.
Article in English | MEDLINE | ID: mdl-35071297

ABSTRACT

Background: Selenium deficiency is widespread in the Malawi population. The selenium concentration in maize, the staple food crop of Malawi, can be increased by applying selenium-enriched fertilizers. It is unknown whether this strategy, called agronomic biofortification, is effective at alleviating selenium deficiency. Objectives: The aim of the Addressing Hidden Hunger with Agronomy (AHHA) trial was to determine whether consumption of maize flour, agronomically-biofortified with selenium, affected the serum selenium concentrations of women, and children in a rural community setting. Design: An individually-randomized, double-blind placebo-controlled trial was conducted in rural Malawi. Participants were randomly allocated in a 1:1 ratio to receive either intervention maize flour biofortified with selenium through application of selenium fertilizer, or control maize flour not biofortified with selenium. Participant households received enough flour to meet the typical consumption of all household members (330 g capita -1 day-1) for a period of 8 weeks. Baseline and endline serum selenium concentration (the primary outcome) was measured by inductively coupled plasma mass spectrometry (ICP-MS). Results: One woman of reproductive age (WRA) and one school-aged child (SAC) from each of 180 households were recruited and households were randomized to each group. The baseline demographic and socioeconomic status of participants were well-balanced between arms. No serious adverse events were reported. In the intervention arm, mean (standard deviation) serum selenium concentration increased over the intervention period from 57.6 (17.0) µg L-1 (n = 88) to 107.9 (16.4) µg L-1 (n = 88) among WRA and from 46.4 (14.8) µg L-1 (n = 86) to 97.1 (16.0) µg L-1 (n = 88) among SAC. There was no evidence of change in serum selenium concentration in the control groups. Conclusion: Consumption of maize flour biofortified through application of selenium-enriched fertilizer increased selenium status in this community providing strong proof of principle that agronomic biofortification could be an effective approach to address selenium deficiency in Malawi and similar settings. Clinical Trial Registration: http://www.isrctn.com/ISRCTN85899451, identifier: ISRCTN85899451.

SELECTION OF CITATIONS
SEARCH DETAIL
...