Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunol ; 36(3): 111-128, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38066638

ABSTRACT

Nurr1 is a member of the orphan nuclear receptor family NR4A (nuclear receptor subfamily 4 group A) that modulates inflammation in several cell lineages, both positively and negatively. Macrophages are key regulators of inflammatory responses, yet information about the role of Nurr1 in human macrophages is scarce. Here we examined Nurr1 expression and activity in steady state and activated human macrophages. Pro- and anti-inflammatory macrophages were generated in vitro by culture of blood monocytes with granulocyte/macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF), respectively. Nurr1 expression was predominant in macrophages with the pro-inflammatory phenotype. Nurr1 activation with the agonists 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane (C-DIM12) or isoxazolo-pyridinone 7e (IP7e) did not globally modify the polarization status of pro-inflammatory macrophages, but they decreased their production of TNF, IL-1ß, IL-6, IL-8, IL-12 p40, CCL2, IFN-ß, and reactive oxygen species, with variable potencies. Conversely, Nurr1 deficient macrophages increased the expression of transcripts encoding inflammatory mediators, particularly that of IL6, IFNB1, and CCL2. Mechanistically, endogenous Nurr1 interacted with NF-κB p65 in basal conditions and upon lipopolysaccharide (LPS)-mediated activation. C-DIM12 stabilized those complexes in cells exposed to LPS and concurrently decreased NF-κB transcriptional activity and p65 nuclear translocation. Expression of high levels of Nurr1 was associated with a subset of dermal macrophages that display enhanced levels of TNF and lower expression of the anti-inflammatory marker CD163L1 in skin lesions from patients with bullous pemphigoid (BP), a chronic inflammatory autoimmune blistering disorder. These results suggest that Nurr1 expression is linked with the pro-inflammatory phenotype of human macrophages, both in vivo and in vitro, where it may constitute a brake to attenuate the synthesis of inflammatory mediators.


Subject(s)
Macrophage Colony-Stimulating Factor , NF-kappa B , Humans , NF-kappa B/metabolism , Macrophage Colony-Stimulating Factor/metabolism , Lipopolysaccharides/pharmacology , Macrophages , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Inflammation/metabolism , Inflammation Mediators/metabolism , Anti-Inflammatory Agents/metabolism
2.
Immunobiology ; 227(6): 152299, 2022 11.
Article in English | MEDLINE | ID: mdl-36370518

ABSTRACT

The orphan nuclear receptor Nur77 is involved in diverse cellular processes such as inflammation, proliferation, differentiation and survival. Stimuli like lipopolysaccharide (LPS) and tumor necrosis factor (TNF) increase Nur77 expression in human and murine macrophages, and it has been proposed that Nur77 plays a major role in dampening the inflammatory response. Here, we evaluated the expression and function of Nur77 in human anti-inflammatory and pro-inflammatory macrophages derived from blood monocytes cultured with macrophage colony-stimulating factor (M-MDMs) or granulocyte/macrophage colony-stimulating factor (GM-MDMs), respectively. Nur77 mRNA expression was significantly enhanced in M-MDMs compared with GM-MDMs, both constitutively and upon exposure to Toll-like receptor (TLR)2, 3, and 4 ligands. Nur77 activation with the agonist Cytosporone B (CsnB) significantly suppressed the production of TNF, interleukin (IL)-1ß, IL-6, and IL-8 in GM-MDMs stimulated with LPS. In contrast, it tended to enhance the production of the anti-inflammatory cytokine IL-10. This effect was associated with reduced NF-κB p65 nuclear translocation. Similarly, Nur77 knockdown enhanced TNF production in GM-MDMs. CsnB effectively stimulated the transactivation activity of Nur77 in M-MDMs, but it did not alter cytokine synthesis or p65 nuclear translocation. However, Nur77 seemed to have a role in maintaining the anti-inflammatory profile of M-MDMs, since Nur77-deficient M-MDMs constitutively produced higher levels of TNF transcripts. Thus, in the absence of exogenous agonists, Nur77 activity favors the anti-inflammatory function of M-MDMs, whereas agonistic activation of this receptor preferentially drives attenuation of inflammation in inflammatory macrophages.


Subject(s)
Macrophages , Nuclear Receptor Subfamily 4, Group A, Member 1 , Phenylacetates , Humans , Cytokines/metabolism , Inflammation/metabolism , Lipopolysaccharides , Macrophage Colony-Stimulating Factor/metabolism , Macrophages/drug effects , Macrophages/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/agonists , Phenylacetates/pharmacology
3.
Immunol Cell Biol ; 98(10): 868-882, 2020 11.
Article in English | MEDLINE | ID: mdl-32696992

ABSTRACT

Obesity is a chronic inflammatory disease associated with adipose tissue macrophage (ATM) activation. ATMs from lean mice contribute to tissue homeostasis by their M2-oriented polarization, whereas obesity leads to an increase of M1 inflammatory ATMs that underlies obesity-related metabolic disorders. In humans, studies characterizing ATMs and their functional status are limited. Here we investigated ATM phenotype in visceral (VAT) and subcutaneous (SAT) adipose tissue from healthy lean and obese individuals using two molecules previously identified as markers of M1-like and M2-like/tissue-resident macrophages, the C-type lectin CLEC5A and the scavenger receptor CD163L1, respectively. CD163L1 was expressed by the majority of ATMs, and CD163L1+ ATM density was greater with respect to cells expressing the pan-macrophage markers CD68 or CD11b. ATM counts in SAT, but not in VAT, increased in obese compared to lean individuals, measured with the three markers. Accordingly, CD163L1, CD68 and ITGAM gene expression was significantly enhanced in obese with respect to control individuals only in SAT. CLEC5A+ ATMs had a proinflammatory profile and were abundant in the lean VAT, but their density diminished in obesity. The only ATM subset that increased its counts in the obese VAT had a mixed M1-like (CD11c+ CD163- CD209- ) and M2-like (CLEC5A- CD206+ ) phenotype. ATM expansion was dominated by a subset of M2-like macrophages (CD11c- CLEC5A- CD163+ CD206+ CD209+ ) in the obese SAT, with a minor contribution of a CD11c+ CLEC5A- ATM subpopulation. Thus, both SAT and VAT seems to limit inflammation during obesity by differentially altering their ATM subset composition.


Subject(s)
Intra-Abdominal Fat/cytology , Macrophages/cytology , Obesity , Subcutaneous Fat/cytology , Humans , Inflammation , Lectins, C-Type , Macrophage Activation , Membrane Glycoproteins , Obesity/immunology , Receptors, Cell Surface , Receptors, Scavenger
4.
Acta Diabetol ; 55(12): 1275-1282, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30306407

ABSTRACT

AIMS: To assess the prevalence of autoantibodies (Aab) to insulin (IAA), glutamic acid decarboxylase 65 (GADA) and insulinoma antigen 2 (IA-2A), as well as human leukocyte antigen (HLA) class II alleles, in first degree relatives (FDR) of Mexican patients with type 1 diabetes (T1D), and to explore whether these parameters mirror the low incidence of T1D in the Mexican population. METHODS: Aab titers were determined by ELISA in 425 FDR, 234 siblings, 40 offspring and 151 parents of 197 patients with T1D. Typing of HLA-DR and -DQ alleles was performed in 41 Aab-positive FDR using polymerase chain reaction with allele-specific oligotyping. RESULTS: Seventy FDR (16.47%) tested positive for Aab. The siblings (19.2%) and the offspring (25%) had significantly higher prevalence of Aab than the parents (9.9%). GADA was the most frequent Aab. Almost half of the Aab-positive FDR had two different Aab (45.7%), and none tested positive for three Aab. The highest prevalence of Aab was found among women in the 15-29 years age group. Moreover, the positivity for two Aab was significantly more frequent among females. A considerable number of FDR (48.8%) carried the susceptible HLA-DR3, -DR4, -DQB1*0201 or -DQB1*0302 alleles, but almost none had the high risk genotype HLA-DR3/DR4. CONCLUSIONS: FDR of Mexican T1D patients have high prevalence of islet Aab, comparable to countries with the highest incidence of T1D. However, Aab positivity does not seem to be associated with HLA risk genotypes, which may have an impact on the low incidence of T1D in Mexico.


Subject(s)
Autoantibodies/blood , Autoimmune Diseases/blood , Autoimmune Diseases/epidemiology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/epidemiology , Family , Adolescent , Adult , Autoantibodies/immunology , Autoimmune Diseases/genetics , Autoimmunity , Child , Diabetes Mellitus, Type 1/genetics , Female , HLA-DQ Antigens/genetics , HLA-DR Antigens/genetics , Humans , Male , Mexico/epidemiology , Middle Aged , Prevalence , Young Adult
5.
Clin Immunol ; 154(1): 72-83, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24993292

ABSTRACT

Tolerogenic dendritic cells (tDC) constitute a promising therapy for autoimmune diseases, since they can anergize T lymphocytes recognizing self-antigens. Patients with type 1 diabetes mellitus (T1D) have autoreactive T cells against pancreatic islet antigens (insulin, glutamic acid decarboxylase 65 -GAD65-). We aimed to determine the ability of tDC derived from T1D patients to inactivate their insulin- and GAD65-reactive T cells. CD14+ monocytes and CD4+CD45RA- effector/memory lymphocytes were isolated from 25 patients. Monocyte-derived DC were generated in the absence (control, cDC) or presence of IL-10 and TGF-ß1 (tDC), and loaded with insulin or GAD65. DC were cultured with T lymphocytes (primary culture), and cell proliferation and cytokine secretion were determined. These lymphocytes were rechallenged with insulin-, GAD65- or candidin-pulsed cDC (secondary culture) to assess whether tDC rendered T cells hyporesponsive to further stimulation. In the primary cultures, tDC induced significant lower lymphocyte proliferation and IL-2 and IFN-γ secretion than cDC; in contrast, tDC induced higher IL-10 production. Lymphocytes from 60% of patients proliferated specifically against insulin or GAD65 (group 1), whereas 40% did not (group 2). Most patients from group 1 had controlled glycemia. The secondary cultures showed tolerance induction to insulin or GAD65 in 14 and 10 patients, respectively. A high percentage of these patients (70-80%) belonged to group 1. Importantly, tDC induced antigen-specific T-cell hyporesponsiveness, since the responses against unrelated antigens were unaffected. These results suggest that tDC therapy against multiple antigens might be useful in a subset of T1D patients.


Subject(s)
Dendritic Cells/drug effects , Dendritic Cells/immunology , Diabetes Mellitus, Type 1/immunology , Glutamate Decarboxylase/pharmacology , Insulin/pharmacology , Peptide Fragments/pharmacology , T-Lymphocytes/drug effects , Adolescent , Adult , Autoantigens/drug effects , Biological Assay , Cell Proliferation/drug effects , Cells, Cultured , Child , Diabetes Mellitus, Type 1/pathology , Female , Flow Cytometry , Humans , Immune Tolerance , In Vitro Techniques , Male , Middle Aged , T-Lymphocytes/immunology
6.
Exp Parasitol ; 142: 1-6, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24721258

ABSTRACT

The free living amoeba Naegleria fowleri is pathogenic to humans but also to other mammalians. These amoebae may invade the nasal mucosa and migrate into the brain causing cerebral hemorrhagic necrosis, a rapidly fatal infection. Knowledge of the cytolytic mechanism involved in the destruction of brain tissues by Naegleria trophozoites is limited. In other amoebic species, such as Entamoeba histolytica, we have previously reported the possible lytic role of small cytoplasmic components endowed with proteolytic activities, known as electrondense granules (EDG). Using transmission electron microscopy we now report that EDG, seldom found in long term cultured N. fowleri, are present in abundance in trophozoites recovered from experimental mice brain lesions. Numerous EDG were also observed in amoebae incubated with collagen substrates or cultured epithelial cells. SDS-PAGE assays of concentrated supernatants of these trophozoites, containing EDG, revealed proteolytic activities. These results suggest that EDG may have a clear role in the cytopathic mechanisms of this pathogenic amoeba.


Subject(s)
Amebiasis/parasitology , Central Nervous System Protozoal Infections/parasitology , Naegleria fowleri/metabolism , Secretory Vesicles/metabolism , Animals , Brain/parasitology , Brain/pathology , Collagen/metabolism , Dogs , Electrophoresis, Polyacrylamide Gel , Erythrocytes/parasitology , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred BALB C , Microscopy, Electron, Transmission , Naegleria fowleri/pathogenicity , Naegleria fowleri/ultrastructure , Secretory Vesicles/ultrastructure , Virulence
7.
J Eukaryot Microbiol ; 58(5): 463-8, 2011.
Article in English | MEDLINE | ID: mdl-21895838

ABSTRACT

Cysts of Naegleria fowleri present an external single-layered cyst wall. To date, little information exists on the biochemical components of this cyst wall. Knowledge of the cyst wall composition is important to understand its resistance capacity under adverse environmental conditions. We have used of a monoclonal antibody (B4F2 mAb) that specifically recognizes enolase in the cyst wall of Entamoeba invadens. By Western blot assays this antibody recognized in soluble extracts of N. fowleri cysts a 48-kDa protein with similar molecular weight to the enolase reported in E. invadens cysts. Immunofluorescence with the B4F2 mAb revealed positive cytoplasmic vesicles in encysting amebas, as well as a positive reaction at the cell wall of mature cysts. Immunoelectron microscopy using the same monoclonal antibody confirmed the presence of enolase in the cell wall of N. fowleri cysts and in cytoplasmic vesicular structures. In addition, the B4F2 mAb had a clear inhibitory effect on encystation of N. fowleri.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Developmental , Naegleria fowleri/enzymology , Naegleria fowleri/growth & development , Phosphopyruvate Hydratase/metabolism , Protozoan Proteins/metabolism , Naegleria fowleri/genetics , Phosphopyruvate Hydratase/genetics , Protozoan Proteins/genetics
8.
Exp Parasitol ; 129(1): 65-71, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21619880

ABSTRACT

The study of the encystation process of Entamoeba histolytica has been hampered by the lack of experimental means of inducing mature cysts in vitro. Previously we have found that cytoplasmic vesicles similar to the encystation vesicles of Entamoeba invadens are present in E. histolytica trophozoites only in amebas recovered from experimental amebic liver abscesses. Here we report that a monoclonal antibody (B4F2) that recognizes the cyst wall of E. invadens also identifies a 48 kDa protein in vesicles of E. histolytica trophozoites recovered from hepatic lesions. This protein is less expressed in trophozoites continuously cultured in axenical conditions. As previously reported for E. invadens, the B4F2 specific antigen was identified as enolase in liver-recovered E. histolytica, by two-dimensional electrophoresis, Western blot and mass spectrometry. In addition, the E. histolytica enolase mRNA was detected by RT PCR. The antigen was localized by immunoelectron microscopy in cytoplasmic vesicles of liver-recovered amebas. The B4F2 antibody also recognized the wall of mature E. histolytica cysts obtained from human samples. These results suggest that the enolase-containing vesicles are produced by E. histolytica amebas, when placed in the unfavorable liver environment that could be interpreted as an attempt to initiate the encystation process.


Subject(s)
Entamoeba histolytica/enzymology , Phosphopyruvate Hydratase/metabolism , Animals , Antibodies, Monoclonal/immunology , Blotting, Western , Cricetinae , Cytoplasmic Vesicles/enzymology , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Entamoeba histolytica/genetics , Entamoeba histolytica/physiology , Enzyme-Linked Immunosorbent Assay , Gene Expression Regulation, Enzymologic , Gerbillinae , Humans , Liver/parasitology , Male , Mass Spectrometry , Microscopy, Fluorescence , Microscopy, Immunoelectron , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/immunology , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
9.
Exp Parasitol ; 125(2): 63-9, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20045689

ABSTRACT

The reptilian parasite Entamoeba invadens is accepted as a model for the study of the Entamoeba encystation process. Here we describe the production and characterization of a mAb (B4F2), generated against a component of the E. invadens cyst wall. This mAb specifically recognizes a 48-kDa protein present in cytoplasmic vesicles of cells encysting for 24 h. In mature cysts (96 h), the antigen was detected on the cyst surface. By two-dimensional electrophoresis and mass spectrometry analysis, the B4F2 specific antigen was identified as enolase. Levels of enolase mRNA were increased in encysting cells and the B4F2 mAb was found to inhibit cyst formation. Therefore, these results strongly suggest a new role for enolase in E. invadens encystation, and the B4F2 mAb will be useful tool to study its role in the differentiation process.


Subject(s)
Entamoeba/physiology , Phosphopyruvate Hydratase/physiology , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/immunology , Blotting, Western , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Entamoeba/enzymology , Entamoeba/growth & development , Entamoeba/immunology , Enzyme-Linked Immunosorbent Assay , Fluorescent Antibody Technique , Hybridomas , Mass Spectrometry , Mice , Mice, Inbred BALB C , Phosphopyruvate Hydratase/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Trophozoites/immunology , Trophozoites/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...