Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Ecology ; 104(7): e4054, 2023 07.
Article in English | MEDLINE | ID: mdl-37082928

ABSTRACT

Functional traits fall along a continuum from resource conservative to acquisitive and are powerful predictors of the ecological settings necessary for a species to persist and establish. As a consequence, a major problem that functional trait analysis could address is understanding the ecological contexts necessary for the persistence of polyploid plants, because early generation polyploids, or "neopolyploids," are at a high extinction risk. Because neopolyploidy could increase nutrient limitation, growth strategies should shift to accommodate the increased need for resources, but this prediction is untested. To address this gap, we compared the functional trait responses of diploids, synthetic neotetraploids, and naturally occurring tetraploids of Heuchera cylindrica, an herbaceous perennial plant, to nutrient manipulations in a greenhouse experiment. We found strong support for the hypothesis that neotetraploidy increases nutrient requirements, as evidenced by reduced productivity and increased tissue concentrations of nitrogen and phosphorus in neotetraploids. We also found that the repeated formation of independent origins of neotetraploidy led to differing responses to nutrient supply, but neotetraploidy generally shifted functional traits to be more resource acquisitive and inefficient. Taken together, our results suggest that shifts in functional trait responses may constrain the ability of neopolyploids to establish in nutrient-poor habitats.


Subject(s)
Heuchera , Polyploidy , Tetraploidy , Phenotype , Ecosystem , Plants
2.
Mol Ecol ; 31(15): 3999-4016, 2022 08.
Article in English | MEDLINE | ID: mdl-35665559

ABSTRACT

Switching to a new host plant is a driving force for divergence and speciation in herbivorous insects. This process of incorporating a novel host plant into the diet may require a number of adaptations in the insect herbivores that allow them to consume host plant tissue that may contain toxic secondary chemicals. As a result, herbivorous insects are predicted to have evolved efficient ways to detoxify major plant defences and increase fitness by either relying on their own genomes or by recruiting other organisms such as microbial gut symbionts. In the present study we used parallel metatranscriptomic analyses of Altica flea beetles and their gut symbionts to explore the contributions of beetle detoxification mechanisms versus detoxification by their gut consortium. We compared the gut meta-transcriptomes of two sympatric Altica species that feed exclusively on different host plant species as well as their F1 hybrids that were fed one of the two host plant species. These comparisons revealed that gene expression patterns of Altica are dependent on both beetle species identity and diet. The community structure of gut symbionts was also dependent on the identity of the beetle species, and the gene expression patterns of the gut symbionts were significantly correlated with beetle species and plant diet. Some of the enriched genes identified in the beetles and gut symbionts are involved in the degradation of secondary metabolites produced by plants, suggesting that Altica flea beetles may use their gut microbiota to help them feed on and adapt to their host plants.


Subject(s)
Coleoptera , Animals , Coleoptera/genetics , Herbivory , Insecta , Plants , Symbiosis/genetics
3.
J Evol Biol ; 35(1): 100-108, 2022 01.
Article in English | MEDLINE | ID: mdl-34855267

ABSTRACT

Species interactions shape the evolution of traits, life histories and the pattern of speciation. What is less clear is whether certain types of species interaction are more or less likely to lead to phenotypic divergence among species. We used the brood pollination mutualism between yuccas and yucca moths to test how mutualistic (pollination) and antagonistic (oviposition) traits differ in the propensity to increase phenotypic divergence among pollinator moths. We measured traits of the tentacular mouthparts, structures used by females to actively pollinate flowers, as well as ovipositor traits to examine differences in the rate of evolution of these two suites of traits among pollinator species. Morphological analyses revealed two distinct groups of moths based on ovipositor morphology, but no such groupings were identified for tentacle morphology, even for moths that pollinated distantly related yuccas. In addition, ovipositor traits evolved at significantly faster rates than tentacular traits. These results support theoretical work suggesting that antagonism is more likely than mutualism to lead to phenotypic divergence.


Subject(s)
Moths , Yucca , Animals , Flowers , Moths/anatomy & histology , Moths/genetics , Oviposition , Pollination , Symbiosis
4.
J Chem Ecol ; 47(12): 1025-1041, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34506004

ABSTRACT

The obligate pollination mutualism between Yucca and yucca moths is a classical example of coevolution. Oviposition and active pollination by female yucca moths occur at night when Yucca flowers are open and strongly scented. Thus, floral volatiles have been suggested as key sensory signals attracting yucca moths to their host plants, but no bioactive compounds have yet been identified. In this study, we showed that both sexes of the pollinator moth Tegeticula yuccasella are attracted to the floral scent of the host Yucca filamentosa. Chemical analysis of the floral headspace from six Yucca species in sections Chaenocarpa and Sarcocarpa revealed a set of novel tetranorsesquiterpenoids putatively derived from (E)-4,8-dimethyl-1,3,7-nonatriene. Their structure elucidation was accomplished by NMR analysis of the crude floral scent sample of Yucca treculeana along with GC/MS analysis and confirmed by total synthesis. Since all these volatiles are included in the floral scent of Y. filamentosa, which has been an important model species for understanding the pollination mutualism, we name these compounds filamentolide, filamentol, filamental, and filamentone. Several of these compounds elicited antennal responses in pollinating (Tegeticula) and non-pollinating (Prodoxus) moth species upon stimulation in electrophysiological recordings. In addition, synthetic (Z)-filamentolide attracted significant numbers of both sexes of two associated Prodoxus species in a field trapping experiment. Highly specialized insect-plant interactions, such as obligate pollination mutualisms, are predicted to be maintained through "private channels" dictated by specific compounds. The identification of novel bioactive tetranorsesquiterpenoids is a first step in testing such a hypothesis in the Yucca-yucca moth interaction.


Subject(s)
Flowers/metabolism , Moths/physiology , Pheromones/metabolism , Sesquiterpenes/metabolism , Yucca/metabolism , Animals , Female
5.
BMC Genomics ; 22(1): 243, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33827435

ABSTRACT

BACKGROUND: Altica (Coleoptera: Chrysomelidae) is a highly diverse and taxonomically challenging flea beetle genus that has been used to address questions related to host plant specialization, reproductive isolation, and ecological speciation. To further evolutionary studies in this interesting group, here we present a draft genome of a representative specialist, Altica viridicyanea, the first Alticinae genome reported thus far. RESULTS: The genome is 864.8 Mb and consists of 4490 scaffolds with a N50 size of 557 kb, which covered 98.6% complete and 0.4% partial insect Benchmarking Universal Single-Copy Orthologs. Repetitive sequences accounted for 62.9% of the assembly, and a total of 17,730 protein-coding gene models and 2462 non-coding RNA models were predicted. To provide insight into host plant specialization of this monophagous species, we examined the key gene families involved in chemosensation, detoxification of plant secondary chemistry, and plant cell wall-degradation. CONCLUSIONS: The genome assembled in this work provides an important resource for further studies on host plant adaptation and functionally affiliated genes. Moreover, this work also opens the way for comparative genomics studies among closely related Altica species, which may provide insight into the molecular evolutionary processes that occur during ecological speciation.


Subject(s)
Coleoptera , Siphonaptera , Animals , Coleoptera/genetics , Evolution, Molecular , Genome , Genomics
6.
Curr Opin Insect Sci ; 47: 46-52, 2021 10.
Article in English | MEDLINE | ID: mdl-33771734

ABSTRACT

Insect mutualisms are essential for reproduction of many plants, protection of plants and other insects, and provisioning of nutrients for insects. Disruption of these mutualisms by global change can have important implications for ecosystem processes. Here, we assess the general effects of global change on insect mutualisms, including the possible impacts on mutualistic networks. We find that the effects of global change on mutualisms are extremely variable, making broad patterns difficult to detect. We require studies focusing on changes in cost-benefit ratios, effects of partner dependency, and degree of specialization to further understand how global change will influence insect mutualism dynamics. We propose that rapid coevolution is one avenue by which mutualists can ameliorate the effects of global change.


Subject(s)
Ecosystem , Symbiosis , Animals , Insecta , Plants
7.
Evolution ; 75(2): 219-230, 2021 02.
Article in English | MEDLINE | ID: mdl-33368192

ABSTRACT

Understanding how mutualisms persist over time requires investigations of how mutualist species coevolve and adapt to the interaction. In particular, the key factors in the evolution of mutualisms are the costs and benefits mutualists experience during the interaction. Here, we used a yeast nutritional mutualism to test how mutualists coevolve and adapt in an obligate mutualism. We allowed two yeast mutualists to evolve together for 15 weeks (about 150 generations), and then we tested if the mutualists had coevolved using time-shift assays. We also examined two mutualistic traits associated with the costs and benefits: resource use efficiency and commodity production. We found that the mutualists quickly coevolved. Furthermore, the changes in benefits and costs were nonlinear and varied with evolutionary changes occurring in the mutualist partner. One mutualist initially evolved to reduce mutualistic commodity production and increase efficiency in mutualistic resource use; however, this negatively affected its mutualist partner that evolved reduced commodity production and resource use efficiency. As a result, the former increased commodity production, resulting in an increase in benefits for its partner. The quick, nonlinear, and asynchronous evolution of yeast mutualists closely resembles antagonistic coevolutionary patterns, supporting the view that mutualisms should be considered as reciprocal exploitation.


Subject(s)
Biological Coevolution , Symbiosis , Models, Statistical , Time Factors , Yeasts
8.
Science ; 370(6514): 346-350, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33060360

ABSTRACT

Mutualisms, or reciprocally beneficial interspecific interactions, constitute the foundation of many ecological communities and agricultural systems. Mutualisms come in different forms, from pairwise interactions to extremely diverse communities, and they are continually challenged with exploitation by nonmutualistic community members (exploiters). Thus, understanding how mutualisms persist remains an essential question in ecology. Theory suggests that high species richness and functional redundancy could promote mutualism persistence in complex mutualistic communities. Using a yeast system (Saccharomyces cerevisiae), we experimentally show that communities with the greatest mutualist richness and functional redundancy are nearly two times more likely to survive exploitation than are simple communities. Persistence increased because diverse communities were better able to mitigate the negative effects of competition with exploiters. Thus, large mutualistic networks may be inherently buffered from exploitation.


Subject(s)
Saccharomyces cerevisiae/physiology , Symbiosis/physiology , Adenine/metabolism , Biota , Lysine/genetics , Lysine/metabolism , Saccharomyces cerevisiae/genetics , Symbiosis/genetics
9.
Microb Ecol ; 80(4): 946-959, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32880699

ABSTRACT

Host plant shifts are a common mode of speciation in herbivorous insects. Although insects can evolve adaptations to successfully incorporate a new host plant, it is becoming increasingly recognized that the gut bacterial community may play a significant role in allowing insects to detoxify novel plant chemical defenses. Here, we examined differences in gut bacterial communities between Altica flea beetle species that feed on phylogenetically unrelated host plants in sympatry. We surveyed the gut bacterial communities of three closely related flea beetles from multiple locations using 16S rRNA amplicon sequencing. The results showed that the beetle species shared a high proportion (80.7%) of operational taxonomic units. Alpha-diversity indicators suggested that gut bacterial diversity did not differ among host species, whereas geography had a significant effect on bacterial diversity. In contrast, analyses of beta-diversity showed significant differences in gut bacterial composition among beetle species when we used species composition and relative abundance metrics, but there was no difference in composition when species presence/absence and phylogenetic distance indices were used. Within host beetle species, gut bacterial composition varied significantly among sites. A metagenomic functionality analysis predicted that the gut microbes had functions involved in xenobiotic biodegradation and metabolism as well as metabolism of terpenoids and polyketides. These predictions, however, did not differ among beetle host species. Antibiotic curing experiments showed that development time was significantly prolonged, and there was a significant decline in body weight of newly emerged adults in beetles lacking gut bacteria, suggesting the beetles may receive a potential benefit from the gut microbe-insect interaction. On the whole, our results suggest that although the gut bacterial community did not show clear host-specific patterns among Altica species, spatiotemporal variability is an important determinant of gut bacterial communities. Furthermore, the similarity of communities among these beetle species suggests that microbial facilitation may not be a determinant of host plant shifts in Altica.


Subject(s)
Bacterial Physiological Phenomena , Coleoptera/microbiology , Gastrointestinal Microbiome , Animals , Bacteria/classification , Bacteria/isolation & purification , Coleoptera/physiology , Female , Male , Metagenome , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
10.
Am J Bot ; 107(5): 833-841, 2020 05.
Article in English | MEDLINE | ID: mdl-32329070

ABSTRACT

PREMISE: Although polyploidy has been studied since the early 1900s, fundamental aspects of polyploid ecology and evolution remain unexplored. In particular, surprisingly little is known about how newly formed polyploids (neopolyploids) become demographically established. Models predict that most polyploids should go extinct within the first few generations as a result of reproductive disadvantages associated with being the minority in a primarily diploid population (i.e., the minority cytotype principle), yet polyploidy is extremely common. Therefore, a key goal in the study of polyploidy is to determine the mechanisms that promote polyploid establishment in nature. Because premating isolation is critical in order for neopolylpoids to avoid minority cytotype exclusion and thus facilitate establishment, we examined floral morphology and three common premating barriers to determine their importance in generating reproductive isolation of neopolyploids from diploids. METHODS: We induced neopolyploidy in Trifolium pratense and compared their floral traits to the diploid progenitors. In addition to shifts in floral morphology, we examined three premating barriers: isolation by self-fertilization, flowering-time asynchrony, and pollinator-mediated isolation. RESULTS: We found significant differences in the morphology of diploid and neopolyploid flowers, but these changes did not facilitate premating barriers that would generate reproductive isolation of neopolyploids from diploids. There was no difference in flowering phenology, pollinator visitation, or selfing between the cytotypes. CONCLUSIONS: Our results indicate that barriers other than the ones tested in this study-such as geographic isolation, vegetative reproduction, and pistil-stigma incompatibilities-may be more important in facilitating isolation and establishment of neopolyploid T. pratense.


Subject(s)
Reproductive Isolation , Trifolium , Flowers , Gene Duplication , Humans , Pollination , Polyploidy
11.
Am J Bot ; 107(1): 164-170, 2020 01.
Article in English | MEDLINE | ID: mdl-31889299

ABSTRACT

PREMISE: Variation in pollen-ovule ratios is thought to reflect the degree of pollen transfer efficiency-the more efficient the process, the fewer pollen grains needed. Few studies have directly examined the relationship between pollen-ovule ratio and pollen transfer efficiency. For active pollination in the pollination brood mutualisms of yuccas and yucca moths, figs and fig wasps, senita and senita moths, and leafflowers and leafflower moths, pollinators purposefully collect pollen and place it directly on the stigmatic surface of conspecific flowers. The tight coupling of insect reproductive interests with pollination of the flowers in which larvae develop ensures that pollination is highly efficient. METHODS: We used the multiple evolutionary transitions between passive pollination and more efficient active pollination to test if increased pollen transfer efficiency leads to reduced pollen-ovule ratios. We collected pollen and ovule data from a suite of plant species from each of the pollination brood mutualisms and used phylogenetically controlled tests and sister-group comparisons to examine whether the shift to active pollination resulted in reduced pollen-ovule ratios. RESULTS: Across all transitions between passive and active pollination in plants, actively pollinated plants had significantly lower pollen-ovule ratios than closely related passively pollinated taxa. Phylogenetically corrected comparisons demonstrated that actively pollinated plant species had an average 76% reduction in the pollen-ovule ratio. CONCLUSIONS: The results for active pollination systems support the general utility of pollen-ovule ratios as indicators of pollination efficiency and the central importance of pollen transfer efficiency in the evolution of pollen-ovule ratio.


Subject(s)
Ovule , Pollination , Animals , Flowers , Pollen , Symbiosis
12.
Am J Bot ; 106(6): 894-900, 2019 06.
Article in English | MEDLINE | ID: mdl-31162645

ABSTRACT

PREMISE: Polyploidy is known to cause physiological changes in plants which, in turn, can affect species interactions. One major physiological change predicted in polyploid plants is a heightened demand for growth-limiting nutrients. Consequently, we expect polyploidy to cause an increased reliance on the belowground mutualists that supply these growth-limiting nutrients. An important first step in investigating how polyploidy affects nutritional mutualisms in plants, then, is to characterize differences in the rate at which diploids and polyploids interact with belowground mutualists. METHODS: We used Heuchera cylindrica (Saxifragaceae) to test how polyploidy influences interactions with arbuscular mycorrhizal fungi (AMF). Here we first confirmed the presence of AMF in H. cylindrica, and then we used field-collected specimens to quantify and compare the presence of AMF structures while controlling for site-specific variation. RESULTS: Tetraploids had higher colonization rates as measured by total, hyphal, and nutritional-exchange structures; however, we found that diploids and tetraploids did not differ in vesicle colonization rates. CONCLUSIONS: The results suggest that polyploidy may alter belowground nutritional mutualisms with plants. Because colonization by nutritional-exchange structures was higher in polyploids but vesicle colonization was not, polyploids might form stronger associations with their AMF partners. Controlled experiments are necessary to test whether this pattern is driven by the direct effect of polyploidy on AMF colonization.


Subject(s)
Heuchera/genetics , Mycorrhizae/physiology , Polyploidy , Symbiosis , Heuchera/microbiology , Heuchera/physiology , Plant Physiological Phenomena/genetics , Symbiosis/genetics
13.
Am J Bot ; 106(3): 469-476, 2019 03.
Article in English | MEDLINE | ID: mdl-30901499

ABSTRACT

PREMISE OF THE STUDY: Polyploidy, or whole genome duplication (WGD), is common in plants despite theory suggesting that polyploid establishment is challenging and polyploids should be evolutionarily transitory. There is renewed interest in understanding the mechanisms that could facilitate polyploid establishment and explain their pervasiveness in nature. In particular, premating isolation from their diploid progenitors is suggested to be a crucial factor. To evaluate how changes in assortative mating occur, we need to understand the phenotypic effects of WGD on reproductive traits. METHODS: We used literature surveys and a meta-analysis to assess how WGD affects floral morphology, flowering phenology, and reproductive output in plants. We focused specifically on comparisons of newly generated polyploids (neopolyploids) and their parents to mitigate potential confounding effects of adaptation and drift that may be present in ancient polyploids. KEY RESULTS: The results indicated that across a broad representation of angiosperms, floral morphology traits increased in size, reproductive output decreased, and flowering phenology was unaffected by WGD. Additionally, we found that increased trait variation after WGD was uncommon for the phenotypic traits examined. CONCLUSIONS: Our results suggest that the phenotypic effects on traits important to premating isolation of neopolyploids are small, in general. Changes in flowering phenology, reproductive output, and phenotypic variation resulting from WGD may be less critical in facilitating premating isolation and neopolyploid establishment. However, floral traits for which size is an important component of function (e.g., pollen transfer) could be strongly influenced by WGD.


Subject(s)
Flowers/physiology , Gene Duplication , Magnoliopsida/physiology , Flowers/genetics , Flowers/growth & development , Magnoliopsida/genetics , Magnoliopsida/growth & development , Reproduction/physiology
14.
J Chem Ecol ; 45(1): 46-49, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30535939

ABSTRACT

The hydrocarbon pattern in the floral scent of Yucca species was found to comprise a group of unbranched, mid-chain alkanes, alkenes, and an alkadiene. In Y. reverchonii, highly dominant (Z)-8-heptadecene is accompanied by (6Z,9Z)-6,9-heptadecadiene and heptadecane as minor components and by traces of other saturated and unsaturated hydrocarbons with similar chain length. Some of these volatiles proved to be perceived by the antennae of Tegeticula cassandra (pollinating seed-eater of Yucca) and Prodoxus decipiens (herbivore on Yucca). The possible biosynthesis of the compounds is discussed.


Subject(s)
Alkadienes/metabolism , Alkanes/metabolism , Alkenes/metabolism , Flowers/metabolism , Yucca/metabolism , Alkadienes/analysis , Alkanes/analysis , Alkenes/analysis , Flowers/chemistry , Yucca/chemistry
15.
New Phytol ; 215(1): 57-69, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28418074

ABSTRACT

Contents 57 I. 57 II. 59 III. 59 IV. 63 V. 64 VI. 64 VII. 66 66 References 66 SUMMARY: Whole-genome duplication (WGD), or polyploidy, has important effects on the genotype and phenotype of plants, potentially altering ecological interactions with other organisms. Even though the connections between polyploidy and species interactions have been recognized for some time, we are only just beginning to test whether WGD affects community context. Here I review the sparse information on polyploidy and community context and then present a set of hypotheses for future work. Thus far, community-level studies of polyploids suggest an array of outcomes, from no changes in community context to shifts in the abundance and composition of interacting species. I propose a number of mechanisms for how WGD could alter community context and how the emergence of polyploids in populations could also alter the community context of parental diploids and other plant species. Resolving how and when these changes are expected to occur will require a deeper understanding of the connections among WGD, phenotypic changes, and the direct and indirect effects of species interactions.


Subject(s)
Ecosystem , Genome, Plant , Plants/genetics , Biological Evolution , Evolution, Molecular , Gene Duplication , Genotype , Polyploidy
16.
Insect Biochem Mol Biol ; 79: 108-118, 2016 12.
Article in English | MEDLINE | ID: mdl-27836740

ABSTRACT

Divergence in chemosensory traits has been posited as an important component of chemosensory speciation in insects. In particular, chemosensory genes expressed in the peripheral sensory neurons are likely to influence insect behaviors such as preference for food, oviposition sites, and mates. Despite their key role in insect behavior and potentially speciation, the underlying genetic basis for divergence in chemosensory traits remains largely unexplored. One way to ascertain the role of chemosensory genes in speciation is to make comparisons of these genes across closely related species to detect the genetic signatures of divergence. Here, we used high throughput transcriptome analysis to compare chemosensory genes of the sister leaf beetles species Pyrrhalta maculicollis and P. aenescens, whose sexual isolation and host plant preference are mediated by divergent chemical signals. Although there was low overall divergence between transcriptome profiles, there were a number of genes that were differentially expressed between the species. Furthermore, we also detected two chemosensory genes under positive selection, one of which that was also differentially expressed between the species, suggesting a possible role for these genes in chemical-based premating reproductive isolation and host use. Combined with the available chemical and ecological work in this system, further studies of the divergent chemosensory genes presented here will provide insight into the process of chemosensory speciation among Pyrrhalta beetles.


Subject(s)
Chemotaxis , Coleoptera/genetics , Insect Proteins/genetics , Transcriptome , Animals , Female , Insect Proteins/metabolism , Male , Phylogeny , Selection, Genetic
17.
Am J Bot ; 103(7): 1326-35, 2016 07.
Article in English | MEDLINE | ID: mdl-27370313

ABSTRACT

Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species.


Subject(s)
Bees/physiology , Genome, Plant/genetics , Plants/genetics , Polyploidy , Selection, Genetic , Animals , Biological Evolution , Diploidy , Flowers/genetics , Flowers/physiology , Host-Pathogen Interactions , Plant Physiological Phenomena , Pollination , Seed Dispersal
18.
Am Nat ; 186(2): 176-86, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26655147

ABSTRACT

Covariation among organismal traits is nearly universal, occurring both within and among species (static and evolutionary allometry, respectively). If conserved developmental processes produce similarity in static and evolutionary allometry, then when species differ in development, it should be expressed in discordance between allometries. Here, we investigate whether rapidly evolving developmental processes result in discordant static and evolutionary allometries attributable to trade-offs in resource acquisition, allocation, or growth across 30 species of aquatic beetles. The highly divergent sperm phenotypes of these beetles might be an important contributor to allometric evolution of testis and accessory gland mass through altered requirements for the production of sperm and seminal fluids. We documented extensive discordance between static and evolutionary allometries, indicating that allometric relationships are flexibly modified over short time periods but subject to constraint over longer time spans. Among species, sperm phenotype did not influence relative investment in accessory glands but was weakly associated with investment in testes. Furthermore, except when sperm were long and simple, sperm phenotype was not associated with species-specific modification of the allometry of testis/accessory gland mass and body size. Our results demonstrate the utility of allometric discordance to infer species differences in the provisioning and growth of concurrently developing traits.


Subject(s)
Biological Evolution , Coleoptera/anatomy & histology , Coleoptera/growth & development , Spermatozoa/cytology , Testis/anatomy & histology , Animals , Body Size , Genitalia, Male/anatomy & histology , Genitalia, Male/growth & development , Male , Phenotype , Selection, Genetic , Testis/growth & development
19.
Proc Biol Sci ; 282(1815)2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26378220

ABSTRACT

Host shifts and subsequent adaption to novel host plants are important drivers of speciation among phytophagous insects. However, there is considerably less evidence for host plant-mediated speciation in the absence of a host shift. Here, we investigated divergence of two sympatric sister elm leaf beetles, Pyrrhalta maculicollis and P. aenescens, which feed on different age classes of the elm Ulmus pumila L. (seedling versus adult trees). Using a field survey coupled with preference and performance trials, we show that these beetle species are highly divergent in both feeding and oviposition preference and specialize on either seedling or adult stages of their host plant. An experiment using artificial leaf discs painted with leaf surface wax extracts showed that host plant chemistry is a critical element that shapes preference. Specialization appears to be driven by adaptive divergence as there was also evidence of divergent selection; beetles had significantly higher survival and fecundity when reared on their natal host plant age class. Together, the results identify the first probable example of divergence induced by host plant age, thus extending how phytophagous insects might diversify in the absence of host shifts.


Subject(s)
Adaptation, Physiological , Coleoptera/physiology , Feeding Behavior , Oviposition , Animals , Coleoptera/growth & development , Female , Male , Plant Leaves/chemistry , Seedlings , Species Specificity , Sympatry , Trees , Ulmus
20.
Trends Ecol Evol ; 29(2): 82-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24314843

ABSTRACT

Coevolutionary diversification is cited as a major mechanism driving the evolution of diversity, particularly in plants and insects. However, tests of coevolutionary diversification have focused on elucidating macroevolutionary patterns rather than the processes giving rise to such patterns. Hence, there is weak evidence that coevolution promotes diversification. This is in part due to a lack of understanding about the mechanisms by which coevolution can cause speciation and the difficulty of integrating results across micro- and macroevolutionary scales. In this review, we highlight potential mechanisms of coevolutionary diversification, outline approaches to examine this process across temporal scales, and propose a set of minimal requirements for demonstrating coevolutionary diversification. Our aim is to stimulate research that tests more rigorously for coevolutionary diversification.


Subject(s)
Biodiversity , Biological Evolution , Animals , Gene Flow , Genetic Speciation , Insecta , Plants , Reproductive Isolation , Selection, Genetic , Sexual Behavior, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...