Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Circulation ; 149(10): 774-787, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38018436

ABSTRACT

BACKGROUND: Cholesterol efflux capacity (CEC) predicts cardiovascular disease independently of high-density lipoprotein (HDL) cholesterol levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 (ATP-binding cassette transporter A1) pathway, but the underlying mechanisms are unclear. METHODS: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 (apolipoprotein A1) in the different particles, and the CECs of plasma and isolated HDLs. RESULTS: We quantified macrophage and ABCA1 CEC of 4 distinct sizes of reconstituted HDL. CEC increased as particle size decreased. Tandem mass spectrometric analysis of chemically cross-linked peptides and molecular dynamics simulations of APOA1, the major protein of HDL, indicated that the mobility of C-terminus of that protein was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs (like reconstituted HDLs) are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3- to 5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. CONCLUSIONS: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the 2 antiparallel molecules of APOA1 are "flipped" off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased cardiovascular disease risk. Thus, extra-small and small HDLs may be key mediators and indicators of the cardioprotective effects of HDL.


Subject(s)
Apolipoprotein A-I , Cardiovascular Diseases , Humans , Apolipoprotein A-I/metabolism , Cardiovascular Diseases/metabolism , Lipoproteins, HDL/metabolism , Cholesterol , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Macrophages/metabolism , Cholesterol, HDL
2.
medRxiv ; 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37961344

ABSTRACT

Background: Cholesterol efflux capacity (CEC) predicts cardiovascular disease (CVD) independently of HDL cholesterol (HDL-C) levels. Isolated small HDL particles are potent promoters of macrophage CEC by the ABCA1 pathway, but the underlying mechanisms are unclear. Methods: We used model system studies of reconstituted HDL and plasma from control and lecithin-cholesterol acyltransferase (LCAT)-deficient subjects to investigate the relationships among the sizes of HDL particles, the structure of APOA1 in the different particles, and the CECs of plasma and isolated HDLs. Results: We quantified macrophage and ABCA1 CEC of four distinct sizes of reconstituted HDL (r-HDL). CEC increased as particle size decreased. MS/MS analysis of chemically crosslinked peptides and molecular dynamics simulations of APOA1 (HDL's major protein) indicated that the mobility of that protein's C-terminus was markedly higher and flipped off the surface in the smallest particles. To explore the physiological relevance of the model system studies, we isolated HDL from LCAT-deficient subjects, whose small HDLs-like r-HDLs-are discoidal and composed of APOA1, cholesterol, and phospholipid. Despite their very low plasma levels of HDL particles, these subjects had normal CEC. In both the LCAT-deficient subjects and control subjects, the CEC of isolated extra-small HDL (a mixture of extra-small and small HDL by calibrated ion mobility analysis) was 3-5-fold greater than that of the larger sizes of isolated HDL. Incubating LCAT-deficient plasma and control plasma with human LCAT converted extra-small and small HDL particles into larger particles, and it markedly inhibited CEC. Conclusions: We present a mechanism for the enhanced CEC of small HDLs. In smaller particles, the C-termini of the two antiparallel molecules of APOA1 are flipped off the lipid surface of HDL. This extended conformation allows them to engage with ABCA1. In contrast, the C-termini of larger HDLs are unable to interact productively with ABCA1 because they form a helical bundle that strongly adheres to the lipid on the particle. Enhanced CEC, as seen with the smaller particles, predicts decreased CVD risk. Thus, extra-small and small HDLs may be key mediators and indicators of HDL's cardioprotective effects.

3.
Curr Opin Lipidol ; 34(5): 208-213, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37548415

ABSTRACT

PURPOSE OF REVIEW: ATP-binding cassette transporter A1 (ABCA1) plays a key role in high-density lipoprotein (HDL) biogenesis and cholesterol export from artery wall cells. Recent evidence challenges the generally accepted model for lipid transport by ABCA1, termed the alternating access mechanism, which proposes that phospholipid moves from the inner leaflet to the outer leaflet of the plasma membrane. RECENT FINDINGS: In contrast to the standard model, our computer simulations of ABCA1 indicate that ABCA1 extracts phospholipid from the plasma membrane's outer leaflet. The lipid then diffuses into the interior of ABCA1 to contact a structure termed the 'gateway'. A conformational change opens the gateway and forces the lipid through a ring-shaped domain, the 'annulus orifice', into the base of an elongated hydrophobic tunnel in the transporter's extracellular domain. Engineered mutations in the gateway and annulus strongly inhibited lipid export by ABCA1 without affecting cell-surface expression levels of the transporter, strongly supporting the proposed model. SUMMARY: Our demonstration that ABCA1 extracts lipid from the outer face of the plasma membrane and forces it into an elongated hydrophobic tunnel contrasts with the alternating access model, which flops phospholipid from the membrane's inner leaflet to its outer leaflet. These results suggest that ABCA1 is a phospholipid translocase that transports lipids by a mechanism distinct from that of other ABC transporters.


Subject(s)
Lipoproteins, HDL , Phospholipids , Humans , Lipoproteins, HDL/metabolism , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Biological Transport , Phospholipids/metabolism , ATP-Binding Cassette Transporters/metabolism
5.
Nat Commun ; 13(1): 4812, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35974019

ABSTRACT

Production of high density lipoprotein (HDL) requires ATP-binding cassette transporter A1 (ABCA1) to drive phospholipid (PL) from the plasma membrane into extracellular apolipoprotein A-I. Here, we use simulations to show that domains of ABCA1 within the plasma membrane remove PL from the membrane's outer leaflet. In our simulations, after the lipid diffuses into the interior of ABCA1's outward-open cavity, PL extracted by the gateway passes through a ring-shaped domain, the annulus orifice, which forms the base of an elongated hydrophobic tunnel in the transporter's extracellular domain. Engineered mutations in the gateway and annulus strongly inhibit lipid export by ABCA1 without affecting cell-surface expression levels. Our finding that ABCA1 extracts lipid from the outer face of the plasma membrane and forces it through its gateway and annulus into an elongated hydrophobic tunnel contrasts with the alternating access model, which proposes that ABCA1 flops PL substrate from the inner leaflet to the outer leaflet of the membrane. Consistent with our model, ABCA1 lacks the charged amino acid residues in the transmembrane domain found in the floppase members of the ABC transporter family.


Subject(s)
Apolipoprotein A-I , Phospholipids , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Apolipoprotein A-I/metabolism , Cell Membrane/metabolism , Lipoproteins, HDL/metabolism , Phospholipids/metabolism , Protein Domains
6.
PLoS One ; 17(2): e0262746, 2022.
Article in English | MEDLINE | ID: mdl-35120130

ABSTRACT

ABCA1 and ABCA4 are enigmatic because they transport substrates in opposite directions yet share >50% amino acid identity. ABCA4 imports lipid conjugates but ABCA1 exports lipids. Both hydrolyze ATP to drive transport, and both contain cytoplasmic regulatory domains (RDs) following nucleotide-binding domains (NBDs) in the primary structure. The tertiary structures of several ABC importers, including ABCA4, show that each RD forms a domain-swapped latch that locks onto the opposing RD and holds the NBDs close together. Crucially, sequences encoding the RDs and their bridges are among the most conserved in the entire ABC-A subfamily. In the original cryo-EM structure of ABCA1, the RDs were modeled without crossover. After close inspection of that cryo-EM density map and the recent structure of ABCA4, we propose that the RDs of ABCA1 also form a domain-swapped latch. A refined ABCA1 model containing latches exhibited significantly improved overall protein geometry. Critically, the conserved crossover sequence leading to the RD-domain swap is directly supported by the original cryo-EM density map of ABCA1 and appears to have been overlooked. Our refined ABCA1 model suggests the possibility that ABCA1, despite being an exporter, has highly restrained NBDs that suggest a transport mechanism that is distinct from 'alternating access'.


Subject(s)
ATP-Binding Cassette Transporters
7.
J Lipid Res ; 63(3): 100168, 2022 03.
Article in English | MEDLINE | ID: mdl-35051413

ABSTRACT

Because of its critical role in HDL formation, significant efforts have been devoted to studying apolipoprotein A-I (APOA1) structural transitions in response to lipid binding. To assess the requirements for the conformational freedom of its termini during HDL particle formation, we generated three dimeric APOA1 molecules with their termini covalently joined in different combinations. The dimeric (d)-APOA1C-N mutant coupled the C-terminus of one APOA1 molecule to the N-terminus of a second with a short alanine linker, whereas the d-APOA1C-C and d-APOA1N-N mutants coupled the C-termini and the N-termini of two APOA1 molecules, respectively, using introduced cysteine residues to form disulfide linkages. We then tested the ability of these constructs to generate reconstituted HDL by detergent-assisted and spontaneous phospholipid microsolubilization methods. Using cholate dialysis, we demonstrate WT and all APOA1 mutants generated reconstituted HDL particles of similar sizes, morphologies, compositions, and abilities to activate lecithin:cholesterol acyltransferase. Unlike WT, however, the mutants were incapable of spontaneously solubilizing short chain phospholipids into discoidal particles. We found lipid-free d-APOA1C-N and d-APOA1N-N retained most of WT APOA1's ability to promote cholesterol efflux via the ATP binding cassette transporter A1, whereas d-APOA1C-C exhibited impaired cholesterol efflux. Our data support the double belt model for a lipid-bound APOA1 structure in nascent HDL particles and refute other postulated arrangements like the "double super helix." Furthermore, we conclude the conformational freedom of both the N- and C-termini of APOA1 is important in spontaneous microsolubilization of bulk phospholipid but is not critical for ABCA1-mediated cholesterol efflux.


Subject(s)
Apolipoprotein A-I , Cholesterol , ATP Binding Cassette Transporter 1/metabolism , Apolipoprotein A-I/metabolism , Biological Transport , Cholesterol/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Phospholipids/metabolism
8.
J Lipid Res ; 62: 100099, 2021.
Article in English | MEDLINE | ID: mdl-34324889

ABSTRACT

Human high-density lipoproteins (HDLs) are a complex mixture of structurally related nanoparticles that perform distinct physiological functions. We previously showed that human HDL containing apolipoprotein A-I (APOA1) but not apolipoprotein A-II (APOA2), designated LpA-I, is composed primarily of two discretely sized populations. Here, we isolated these particles directly from human plasma by antibody affinity chromatography, separated them by high-resolution size-exclusion chromatography and performed a deep molecular characterization of each species. The large and small LpA-I populations were spherical with mean diameters of 109 Å and 91 Å, respectively. Unexpectedly, isotope dilution MS/MS with [15N]-APOA1 in concert with quantitation of particle concentration by calibrated ion mobility analysis demonstrated that the large particles contained fewer APOA1 molecules than the small particles; the stoichiometries were 3.0 and 3.7 molecules of APOA1 per particle, respectively. MS/MS experiments showed that the protein cargo of large LpA-I particles was more diverse. Human HDL and isolated particles containing both APOA1 and APOA2 exhibit a much wider range and variation of particle sizes than LpA-I, indicating that APOA2 is likely the major contributor to HDL size heterogeneity. We propose a ratchet model based on the trefoil structure of APOA1 whereby the helical cage maintaining particle structure has two "settings"-large and small-that accounts for these findings. This understanding of the determinants of HDL particle size and protein cargo distribution serves as a basis for determining the roles of HDL subpopulations in metabolism and disease states.


Subject(s)
Apolipoprotein A-II/chemistry , Apolipoprotein A-I/chemistry , Cholesterol, HDL/chemistry , Particle Size
10.
Circ Res ; 127(9): 1198-1210, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32819213

ABSTRACT

RATIONALE: HDL (high-density lipoprotein) may be cardioprotective because it accepts cholesterol from macrophages via the cholesterol transport proteins ABCA1 (ATP-binding cassette transporter A1) and ABCG1 (ATP-binding cassette transporter G1). The ABCA1-specific cellular cholesterol efflux capacity (ABCA1 CEC) of HDL strongly and negatively associates with cardiovascular disease risk, but how diabetes mellitus impacts that step is unclear. OBJECTIVE: To test the hypothesis that HDL's cholesterol efflux capacity is impaired in subjects with type 2 diabetes mellitus. METHODS AND RESULTS: We performed a case-control study with 19 subjects with type 2 diabetes mellitus and 20 control subjects. Three sizes of HDL particles, small HDL, medium HDL, and large HDL, were isolated by high-resolution size exclusion chromatography from study subjects. Then we assessed the ABCA1 CEC of equimolar concentrations of particles. Small HDL accounted for almost all of ABCA1 CEC activity of HDL. ABCA1 CEC-but not ABCG1 CEC-of small HDL was lower in the subjects with type 2 diabetes mellitus than the control subjects. Isotope dilution tandem mass spectrometry demonstrated that the concentration of SERPINA1 (serpin family A member 1) in small HDL was also lower in subjects with diabetes mellitus. Enriching small HDL with SERPINA1 enhanced ABCA1 CEC. Structural analysis of SERPINA1 identified 3 amphipathic α-helices clustered in the N-terminal domain of the protein; biochemical analyses demonstrated that SERPINA1 binds phospholipid vesicles. CONCLUSIONS: The ABCA1 CEC of small HDL is selectively impaired in type 2 diabetes mellitus, likely because of lower levels of SERPINA1. SERPINA1 contains a cluster of amphipathic α-helices that enable apolipoproteins to bind phospholipid and promote ABCA1 activity. Thus, impaired ABCA1 activity of small HDL particles deficient in SERPINA1 could increase cardiovascular disease risk in subjects with diabetes mellitus.


Subject(s)
ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Cardiovascular Diseases/etiology , Cholesterol/metabolism , Diabetes Mellitus, Type 2/metabolism , Lipoproteins, HDL/metabolism , alpha 1-Antitrypsin/metabolism , Apolipoprotein C-II/analysis , Apolipoproteins/metabolism , Case-Control Studies , Diabetes Mellitus, Type 2/blood , Female , Humans , Macrophages/metabolism , Male , Middle Aged , Phospholipids/metabolism , Protein Structure, Tertiary , Risk , Triglycerides/analysis , alpha 1-Antitrypsin/chemistry
11.
Chem Res Toxicol ; 32(3): 484-492, 2019 03 18.
Article in English | MEDLINE | ID: mdl-30701961

ABSTRACT

Human cytochrome P450 (P450) family 4 enzymes are involved in the metabolism of fatty acids and the bioactivation of carcinogenic arylamines and toxic natural products, e.g., 4-ipomeanol. These and other drug-metabolizing P450s are redox sensitive, showing a loss of activity resulting from preincubation with H2O2 and recovery with mild reducing agents [Albertolle, M. W., et al. (2017) J. Biol. Chem. 292, 11230-11242]. The inhibition is due to sulfenylation of the heme-thiolate ligand, as determined by chemopreoteomics and spectroscopy. This phenomenon may have implications for chemical toxicity and observed disease-drug interactions, in which the decreased metabolism of P450 substrates occurs in patients with inflammatory diseases (e.g., influenza and autoimmunity). Human P450 1A2 was determined to be redox insensitive. To determine the mechanism underlying the differential redox sensitivity, molecular dynamics (MD) simulations were employed using the crystal structure of rabbit P450 4B1 (Protein Data Bank entry 5T6Q ). In simulating either the thiolate (Cys-S-) or the sulfenic acid (Cys-SOH) at the heme ligation site, MD revealed Gln-451 in either an "open" or "closed" conformation, respectively, between the cytosol and heme-thiolate cysteine. Mutation to either an isosteric leucine (Q451L) or glutamate (Q451E) abrogated the redox sensitivity, suggesting that this "open" conformation allows for reduction of the sulfenic acid and religation of the thiolate to the heme iron. In summary, MD simulations suggest that Gln-451 in P450 4B1 adopts conformations that may stabilize and protect the heme-thiolate sulfenic acid; mutating this residue destabilizes the interaction, producing a redox insensitive enzyme.


Subject(s)
Aryl Hydrocarbon Hydroxylases/metabolism , Glutamine/pharmacology , Heme/metabolism , Sulfenic Acids/metabolism , Sulfhydryl Compounds/metabolism , Animals , Aryl Hydrocarbon Hydroxylases/chemistry , Aryl Hydrocarbon Hydroxylases/genetics , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Oxidation-Reduction , Rabbits
12.
Mol Cell Proteomics ; 18(5): 854-864, 2019 05.
Article in English | MEDLINE | ID: mdl-30659061

ABSTRACT

Apolipoprotein A1 (APOA1), the major protein of high-density lipoprotein (HDL), contains 10 helical repeats that play key roles in protein-protein and protein-lipid interactions. The current structural model for HDL proposes that APOA1 forms an antiparallel dimer in which helix 5 in monomer 1 associates with helix 5 in monomer 2 along a left-left (LL5/5) interface, forming a protein complex with a 2-fold axis of symmetry centered on helix 5. However, computational studies suggest that other orientations are possible. To test this idea, we used a zero-length chemical cross-linking reagent that forms covalent bonds between closely apposed basic and acidic residues. Using proteolytic digestion and tandem mass spectrometry, we identified amino acids in the central region of the antiparallel APOA1 dimer of HDL that were in close contact. As predicted by the current model, we found six intermolecular cross-links that were consistent with the antiparallel LL5/5 registry. However, we also identified three intermolecular cross-links that were consistent with the antiparallel LL5/4 registry. The LL5/5 is the major structural conformation of the two complexes in both reconstituted discoidal HDL particles and in spherical HDL from human plasma. Molecular dynamic simulations suggest that that LL5/5 and LL5/4 APOA1 dimers possess similar free energies of dimerization, with LL5/5 having the lowest free energy. Our observations indicate that phospholipidated APOA1 in HDL forms different antiparallel dimers that could play distinct roles in enzyme regulation, assembly of specific protein complexes, and the functional properties of HDL in humans.


Subject(s)
Apolipoprotein A-I/metabolism , Lipoproteins, HDL/metabolism , Protein Multimerization , Amino Acid Sequence , Apolipoprotein A-I/chemistry , Cross-Linking Reagents/chemistry , Humans , Models, Molecular , Nitrogen Isotopes , Peptides/chemistry
13.
J Lipid Res ; 59(7): 1244-1255, 2018 07.
Article in English | MEDLINE | ID: mdl-29773713

ABSTRACT

APOA1 is the most abundant protein in HDL. It modulates interactions that affect HDL's cardioprotective functions, in part via its activation of the enzyme, LCAT. On nascent discoidal HDL, APOA1 comprises 10 α-helical repeats arranged in an anti-parallel stacked-ring structure that encapsulates a lipid bilayer. Previous chemical cross-linking studies suggested that these APOA1 rings can adopt at least two different orientations, or registries, with respect to each other; however, the functional impact of these structural changes is unknown. Here, we placed cysteine residues at locations predicted to form disulfide bonds in each orientation and then measured APOA1's ability to adopt the two registries during HDL particle formation. We found that most APOA1 oriented with the fifth helix of one molecule across from fifth helix of the other (5/5 helical registry), but a fraction adopted a 5/2 registry. Engineered HDLs that were locked in 5/5 or 5/2 registries by disulfide bonds equally promoted cholesterol efflux from macrophages, indicating functional particles. However, unlike the 5/5 registry or the WT, the 5/2 registry impaired LCAT cholesteryl esterification activity (P < 0.001), despite LCAT binding equally to all particles. Chemical cross-linking studies suggest that full LCAT activity requires a hybrid epitope composed of helices 5-7 on one APOA1 molecule and helices 3-4 on the other. Thus, APOA1 may use a reciprocating thumbwheel-like mechanism to activate HDL-remodeling proteins.


Subject(s)
Apolipoprotein A-I/metabolism , Cholesterol, HDL/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Apolipoprotein A-I/genetics , Enzyme Activation , Humans , Mutation
14.
Proc Natl Acad Sci U S A ; 115(20): 5163-5168, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29712830

ABSTRACT

Understanding the function of high-density lipoprotein (HDL) requires detailed knowledge of the structure of its primary protein, apolipoprotein A-I (APOA1). However, APOA1 flexibility and HDL heterogeneity have confounded decades of efforts to determine high-resolution structures and consistent models. Here, molecular dynamics simulations totaling 30 µs on two nascent HDLs, each with 2 APOA1 and either 160 phospholipids and 24 cholesterols or 200 phospholipids and 20 cholesterols, show that residues 1-21 of the N-terminal domains of APOA1 interact via strong salt bridges. Residues 26-43 of one APOA1 in the smaller particle form a hinge on the disc edge, which displaces the C-terminal domain of the other APOA1 to the phospholipid surface. The proposed structures are supported by chemical cross-linking, Rosetta modeling of the N-terminal domain, and analysis of the lipid-free ∆185APOA1 crystal structure. These structures provide a framework for understanding HDL maturation and revise all previous models of nascent HDL.


Subject(s)
Apolipoprotein A-I/chemistry , Cholesterol/chemistry , Lipoproteins, HDL/chemistry , Phospholipids/chemistry , Apolipoprotein A-I/metabolism , Cholesterol/metabolism , Humans , Lipoproteins, HDL/metabolism , Molecular Dynamics Simulation , Phospholipids/metabolism , Protein Structure, Tertiary
15.
Nat Struct Mol Biol ; 24(12): 1093-1099, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29131142

ABSTRACT

Apolipoprotein (apo)A-I is an organizing scaffold protein that is critical to high-density lipoprotein (HDL) structure and metabolism, probably mediating many of its cardioprotective properties. However, HDL biogenesis is poorly understood, as lipid-free apoA-I has been notoriously resistant to high-resolution structural study. Published models from low-resolution techniques share certain features but vary considerably in shape and secondary structure. To tackle this central issue in lipoprotein biology, we assembled a team of structural biologists specializing in apolipoproteins and set out to build a consensus model of monomeric lipid-free human apoA-I. Combining novel and published cross-link constraints, small-angle X-ray scattering (SAXS), hydrogen-deuterium exchange (HDX) and crystallography data, we propose a time-averaged model consistent with much of the experimental data published over the last 40 years. The model provides a long-sought platform for understanding and testing details of HDL biogenesis, structure and function.


Subject(s)
Apolipoprotein A-I/metabolism , Lipoproteins, HDL/biosynthesis , Lipoproteins, HDL/metabolism , Models, Molecular , Cardiotonic Agents/metabolism , Computer Simulation , Crystallography, X-Ray , Humans , Protein Structure, Secondary
16.
Biochemistry ; 56(31): 4084-4094, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28702990

ABSTRACT

Our previous studies demonstrated that the first 1000 amino acid residues (the ßα1 domain) of human apolipoprotein (apo) B-100, termed apoB:1000, are required for the initiation of lipoprotein assembly and the formation of a monodisperse stable phospholipid (PL)-rich particle. The objectives of this study were (a) to assess the effects on the properties of apoB truncates undergoing sequential inclusion of the amphipathic ß strands in the 700 N-terminal residues of the ß1 domain of apoB-100 and (b) to identify the subdomain in the ß1 domain that is required for the formation of a microsomal triglyceride transfer protein (MTP)-dependent triacylglycerol (TAG)-rich apoB-containing particle. Characterization of particles secreted by stable transformants of McA-RH7777 cells demonstrated the following. (1) The presence of amphipathic ß strands in the 200 N-terminal residues of the ß1 domain resulted in the secretion of apoB truncates (apoB:1050 to apoB:1200) as both lipidated and lipid-poor particles. (2) Inclusion of residues 300-700 of the ß1 domain led to the secretion of apoB:1300, apoB:1400, apoB:1500, and apoB:1700 predominantly as lipidated particles. (3) Particles containing residues 1050-1500 were all rich in PL. (4) There was a marked increase in the lipid loading capacity and TAG content of apoB:1700-containing particles. (5) Only the level of secretion of apoB:1700 was markedly diminished by MTP inhibitor BMS-197636. These results suggest that apoB:1700 marks the threshold for the formation of a TAG-rich particle and support the concept that MTP participates in apoB assembly and secretion at the stage where particles undergo a transition from PL-rich to TAG-rich.


Subject(s)
Apolipoprotein B-100/chemistry , Carrier Proteins/metabolism , Hepatocytes/metabolism , Lipoproteins, VLDL/metabolism , Animals , Apolipoprotein B-100/genetics , Apolipoprotein B-100/metabolism , Biological Transport/drug effects , Carrier Proteins/antagonists & inhibitors , Cell Line, Tumor , Fluorenes/pharmacology , Hepatocytes/drug effects , Humans , Isoindoles/pharmacology , Lipoproteins, VLDL/antagonists & inhibitors , Lipoproteins, VLDL/chemistry , Molecular Weight , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phospholipids/analysis , Phospholipids/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Stability , Proteolysis/drug effects , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Triglycerides/analysis , Triglycerides/metabolism
17.
Biochim Biophys Acta ; 1858(10): 2401-2420, 2016 10.
Article in English | MEDLINE | ID: mdl-26969087

ABSTRACT

Plasma lipoproteins are macromolecular assemblies of proteins and lipids found in the blood. The lipid components of lipoproteins are amphipathic lipids such as phospholipids (PLs), and unesterified cholesterols (UCs) and hydrophobic lipids such as cholesteryl esters (CEs) and triglycerides (TGs). Since lipoproteins are soft matter supramolecular assemblies easily deformable by thermal fluctuations and they also exist in varying densities and protein/lipid components, a detailed understanding of their structure/function is experimentally difficult. Molecular dynamics (MD) simulation has emerged as a particularly promising way to explore the structure and dynamics of lipoproteins. The purpose of this review is to survey the current status of computational studies of the lipid components of the lipoproteins. Computational studies aim to explore three levels of complexity for the 3-dimensional structural dynamics of lipoproteins at various metabolic stages: (i) lipoprotein particles consist of protein with minimal lipid; (ii) lipoprotein particles consist of PL-rich discoidal bilayer-like lipid particles; (iii) mature circulating lipoprotein particles consist of CE-rich or TG-rich spheroidal lipid-droplet-like particles. Due to energy barriers involved in conversion between these species, other biomolecules also participate in lipoprotein biological assembly. For example: (i) lipid-poor apolipoprotein A-I (apoA-I) interacts with ATP-binding cassette transporter A1 (ABCA1) to produce nascent discoidal high density lipoprotein (dHDL) particles; (ii) lecithin-cholesterol acyltransferase (LCAT) mediates the conversion of UC to CE in dHDL, driving spheroidal HDL (sHDL) formation; (iii) transfer proteins, cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), transfer both CE and TG and PL, respectively, between lipoprotein particles. Computational studies have the potential to explore different lipoprotein particles at each metabolic stage in atomistic detail. This review discusses the current status of computational methods including all-atom MD (AAMD), coarse-grain MD (CGMD), and MD-simulated annealing (MDSA) and their applications in lipoprotein structural dynamics and biological assemblies. Results from MD simulations are discussed and compared across studies in order to identify key findings, controversies, issues and future directions. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.


Subject(s)
Lipoproteins/chemistry , Molecular Dynamics Simulation , Animals , Apolipoprotein A-I/chemistry , Humans , Lipoproteins/analysis , Lipoproteins/blood , Lipoproteins/metabolism , Lipoproteins, HDL/chemistry , Lipoproteins, LDL/chemistry , Triglycerides/chemistry
18.
J Biol Chem ; 291(10): 5439-51, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26755744

ABSTRACT

Apolipoprotein (apo) A-I mediates many of the anti-atherogenic functions attributed to high density lipoprotein. Unfortunately, efforts toward a high resolution structure of full-length apoA-I have not been fruitful, although there have been successes with deletion mutants. Recently, a C-terminal truncation (apoA-I(Δ185-243)) was crystallized as a dimer. The structure showed two helical bundles connected by a long, curved pair of swapped helical domains. To compare this structure to that existing under solution conditions, we applied small angle x-ray scattering and isotope-assisted chemical cross-linking to apoA-I(Δ185-243) in its dimeric and monomeric forms. For the dimer, we found evidence for the shared domains and aspects of the N-terminal bundles, but not the molecular curvature seen in the crystal. We also found that the N-terminal bundles equilibrate between open and closed states. Interestingly, this movement is one of the transitions proposed during lipid binding. The monomer was consistent with a model in which the long shared helix doubles back onto the helical bundle. Combined with the crystal structure, these data offer an important starting point to understand the molecular details of high density lipoprotein biogenesis.


Subject(s)
Apolipoprotein A-I/chemistry , Lipid Metabolism , Molecular Dynamics Simulation , Amino Acid Sequence , Apolipoprotein A-I/genetics , Apolipoprotein A-I/metabolism , Binding Sites , Humans , Molecular Sequence Data , Protein Binding , Protein Multimerization
19.
Structure ; 23(7): 1214-26, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-26095027

ABSTRACT

Biogenesis of high-density lipoproteins (HDL) is coupled to the transmembrane protein, ATP-binding cassette transporter A1 (ABCA1), which transports phospholipid (PL) from the inner to the outer membrane monolayer. Using a combination of computational and experimental approaches, we show that increased outer lipid monolayer surface density, driven by excess PL or membrane insertion of amphipathic helices, results in pleating of the outer monolayer to form membrane-attached discoidal bilayers. Apolipoprotein (apo)A-I accelerates and stabilizes the pleats. In the absence of apoA-I, pleats collapse to form vesicles. These results mimic cells overexpressing ABCA1 that, in the absence of apoA-I, form and release vesicles. We conclude that the basic driving force for nascent discoidal HDL assembly is a PL pump-induced surface density increase that produces lipid monolayer pleating. We then argue that ABCA1 forms an extracellular reservoir containing an isolated pressurized lipid monolayer decoupled from the transbilayer density buffering of cholesterol.


Subject(s)
Lipid Bilayers/chemistry , Lipoproteins, HDL/chemistry , Phosphatidylcholines/chemistry , ATP Binding Cassette Transporter 1/chemistry , Cell Membrane Structures/chemistry , Cholesterol/chemistry , Molecular Dynamics Simulation
20.
J Lipid Res ; 56(3): 620-634, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25589508

ABSTRACT

LCAT is activated by apoA-I to form cholesteryl ester. We combined two structures, phospholipase A2 (PLA2) that hydrolyzes the ester bond at the sn-2 position of oxidized (short) acyl chains of phospholipid, and bacteriophage tubulin PhuZ, as C- and N-terminal templates, respectively, to create a novel homology model for human LCAT. The juxtaposition of multiple structural motifs matching experimental data is compelling evidence for the general correctness of many features of the model: i) The N-terminal 10 residues of the model, required for LCAT activity, extend the hydrophobic binding trough for the sn-2 chain 15-20 Å relative to PLA2. ii) The topography of the trough places the ester bond of the sn-2 chain less than 5 Å from the hydroxyl of the catalytic nucleophile, S181. iii) A ß-hairpin resembling a lipase lid separates S181 from solvent. iv) S181 interacts with three functionally critical residues: E149, that regulates sn-2 chain specificity, and K128 and R147, whose mutations cause LCAT deficiency. Because the model provides a novel explanation for the complicated thermodynamic problem of the transfer of hydrophobic substrates from HDL to the catalytic triad of LCAT, it is an important step toward understanding the antiatherogenic role of HDL in reverse cholesterol transport.


Subject(s)
Models, Molecular , Phosphatidylcholine-Sterol O-Acyltransferase/chemistry , Biological Transport, Active , Cholesterol/chemistry , Cholesterol/genetics , Cholesterol/metabolism , Humans , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/genetics , Lipoproteins, HDL/metabolism , Phosphatidylcholine-Sterol O-Acyltransferase/genetics , Phosphatidylcholine-Sterol O-Acyltransferase/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...