Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 12(6)2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37370388

ABSTRACT

Prototypic Staphylococcus aureus and their small-colony variants (SCVs) are predominant in cystic fibrosis (CF), but the interdependence of these phenotypes is poorly understood. We characterized S. aureus isolates from adult CF patients over several years. Of 18 S. aureus-positive patients (58%), 13 (72%) were positive for SCVs. Characterization included genotyping, SCCmec types, auxotrophy, biofilm production, antibiotic susceptibilities and tolerance, and resistance acquisition rates. Whole-genome sequencing revealed that several patients were colonized with prototypical and SCV-related clones. Some clonal pairs showed acquisition of aminoglycoside resistance that was not explained by aminoglycoside-modifying enzymes, suggesting a mutation-based process. The characteristics of SCVs that could play a role in resistance acquisition were thus investigated further. For instance, SCV isolates produced more biofilm (p < 0.05) and showed a higher survival rate upon exposure to ciprofloxacin and vancomycin compared to their prototypic associated clones. SCVs also developed spontaneous rifampicin resistance mutations at a higher frequency. Accordingly, a laboratory-derived SCV (ΔhemB) acquired resistance to ciprofloxacin and gentamicin faster than its parent counterpart after serial passages in the presence of sub-inhibitory concentrations of antibiotics. These results suggest a role for SCVs in the establishment of persistent antibiotic-resistant clones in adult CF patients.

2.
RNA Biol ; 18(sup2): 699-710, 2021 11 12.
Article in English | MEDLINE | ID: mdl-34612173

ABSTRACT

Clostridioides difficile is the main cause of nosocomial antibiotic-associated diarrhoea. There is a need for new antimicrobials to tackle this pathogen. Guanine riboswitches have been proposed as promising new antimicrobial targets, but experimental evidence of their importance in C. difficile is missing. The genome of C. difficile encodes four distinct guanine riboswitches, each controlling a single gene involved in purine metabolism and transport. One of them controls the expression of guaA, encoding a guanosine monophosphate (GMP) synthase. Here, using in-line probing and GusA reporter assays, we show that these riboswitches are functional in C. difficile and cause premature transcription termination upon binding of guanine. All riboswitches exhibit a high affinity for guanine characterized by Kd values in the low nanomolar range. Xanthine and guanosine also bind the guanine riboswitches, although with less affinity. Inactivating the GMP synthase (guaA) in C. difficile strain 630 led to cell death in minimal growth conditions, but not in rich medium. Importantly, the capacity of a guaA mutant to colonize the mouse gut was significantly reduced. Together, these results demonstrate the importance of de novo GMP biosynthesis in C. difficile during infection, suggesting that targeting guanine riboswitches with analogues could be a viable therapeutic strategy.


Subject(s)
Carbon-Nitrogen Ligases/genetics , Clostridioides difficile/physiology , Clostridium Infections/microbiology , Gene Expression Regulation, Bacterial , Riboswitch , Animals , Carbon-Nitrogen Ligases/metabolism , Genome, Bacterial , Genomics/methods , Guanine , Mice , Microbial Viability/genetics , Mutation , Transcription, Genetic , Virulence/genetics
3.
Diagn Microbiol Infect Dis ; 89(2): 168-171, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28733126

ABSTRACT

The propensity of oritavancin to select for stably elevated oritavancin minimum inhibitory concentrations (MICs) was studied by serial passaging of strains in broth containing oritavancin for 20days. Seven clinical strains of Enterococcus faecalis and E. faecium were studied; they included vancomycin-susceptible and both VanA and VanB vancomycin-resistant isolates. Stepwise oritavancin selection yielded stably elevated oritavancin MICs in six of the seven strains, with MIC increases ranging from 4-32-fold. By comparison, stepwise selection with comparator agents dalbavancin (4- to >128-fold MIC increases), telavancin (4-8-fold MIC increases) and daptomycin (4-32-fold MIC increases) also yielded selectants with elevated MICs of the respective agents. Oritavancin selectants retained parental MICs of vancomycin, daptomycin, linezolid and rifampicin. Some, but not all of the oritavancin selectants also showed MIC increases to the lipoglycopeptides telavancin, dalbavancin and teicoplanin, suggesting that within the lipoglycopeptide class, different mechanisms of action may be elucidated.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Enterococcus faecalis/drug effects , Enterococcus faecium/drug effects , Glycopeptides/pharmacology , Aminoglycosides/pharmacology , Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Daptomycin/pharmacology , Enterococcus faecalis/classification , Enterococcus faecalis/genetics , Enterococcus faecium/classification , Enterococcus faecium/genetics , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Humans , Lipoglycopeptides , Microbial Sensitivity Tests , Teicoplanin/analogs & derivatives , Teicoplanin/pharmacology , Vancomycin/pharmacology , Vancomycin Resistance/genetics
4.
J Antimicrob Chemother ; 67(3): 559-68, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22129590

ABSTRACT

OBJECTIVES: This study characterized the multiple biological activities of the natural compound tomatidine against Staphylococcus aureus. Notably, this work examined the antibacterial activity of tomatidine in combination with other antibiotics and the influence of this compound on the expression of virulence factors in S. aureus. METHODS: The effect of tomatidine on the susceptibility of S. aureus to several antibiotic classes was determined by a broth microdilution procedure and a chequerboard protocol to measure fractional inhibitory concentration indices and to reveal drug interactions. Time-kill experiments for aminoglycoside/tomatidine combinations were also performed. The haemolytic ability of several strains in the presence of tomatidine was measured on blood agar plates and the expression of virulence-associated genes in strain ATCC 29213 treated with tomatidine was monitored by quantitative PCR. RESULTS: Tomatidine specifically potentiated the inhibitory effect of aminoglycosides but not of other classes of drugs. This potentiating effect was observed against strains of different clinical origins (human blood, cystic fibrosis airways, osteomyelitis, skin tissues and bovine mastitis), including aminoglycoside-resistant bacteria possessing the aac(6')-aph(2″), ant(4')-Ia and aph(3')-IIIa genes. The killing kinetics for the combination of aminoglycosides with tomatidine revealed strong bactericidal activity. Although tomatidine did not possess growth-inhibitory activity of its own against prototypical S. aureus, it inhibited the haemolytic activity of several strains and, more specifically, blocked the expression of several genes normally influenced by the agr system. CONCLUSIONS: These results show that tomatidine is an aminoglycoside potentiator that also acts as an anti-virulence agent targeting both antibiotic-susceptible and antibiotic-resistant S. aureus.


Subject(s)
Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Drug Synergism , Staphylococcus aureus/drug effects , Tomatine/analogs & derivatives , Virulence Factors/antagonists & inhibitors , Animals , Culture Media/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Erythrocytes/microbiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial/drug effects , Hemolysin Proteins/antagonists & inhibitors , Hemolysis , Horses , Microbial Sensitivity Tests , Microbial Viability/drug effects , Real-Time Polymerase Chain Reaction , Staphylococcus aureus/pathogenicity , Time Factors , Tomatine/pharmacology , Virulence
5.
BMC Microbiol ; 10: 33, 2010 Jan 30.
Article in English | MEDLINE | ID: mdl-20113519

ABSTRACT

BACKGROUND: Staphylococcus aureus and Pseudomonas aeruginosa are often found together in the airways of cystic fibrosis (CF) patients. It was previously shown that the P. aeruginosa exoproduct 4-hydroxy-2-heptylquinoline-N-oxide (HQNO) suppresses the growth of S. aureus and provokes the emergence of small-colony variants (SCVs). The presence of S. aureus SCVs as well as biofilms have both been associated with chronic infections in CF. RESULTS: We demonstrated that HQNO stimulates S. aureus to form a biofilm in association with the formation of SCVs. The emergence of SCVs and biofilm production under HQNO exposure was shown to be dependent on the activity of the stress- and colonization-related alternative sigma factor B (SigB). Analysis of gene expression revealed that exposure of a prototypical S. aureus strain to HQNO activates SigB, which was leading to an increase in the expression of the fibronectin-binding protein A and the biofilm-associated sarA genes. Conversely, the quorum sensing accessory gene regulator (agr) system and the alpha-hemolysin gene were repressed by HQNO. Experiments using culture supernatants from P. aeruginosa PAO1 and a double chamber co-culture model confirmed that P. aeruginosa stimulates biofilm formation and activates SigB in a S. aureus strain isolated from a CF patient. Furthermore, the supernatant from P. aeruginosa mutants unable to produce HQNO induced the production of biofilms by S. aureus to a lesser extent than the wild-type strain only in a S. aureus SigB-functional background. CONCLUSIONS: These results suggest that S. aureus responds to HQNO from P. aeruginosa by forming SCVs and biofilms through SigB activation, a phenomenon that may contribute to the establishment of chronic infections in CF patients.


Subject(s)
Bacterial Proteins/metabolism , Biofilms/growth & development , Hydroxyquinolines/pharmacology , Sigma Factor/metabolism , Staphylococcus aureus/drug effects , Biofilms/drug effects , Gene Expression Regulation, Bacterial , Microbial Sensitivity Tests , Minisatellite Repeats , Pseudomonas aeruginosa/chemistry , RNA, Bacterial/genetics , Staphylococcus aureus/genetics , Staphylococcus aureus/growth & development , Staphylococcus aureus/metabolism
6.
Microb Pathog ; 48(1): 18-27, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19825410

ABSTRACT

Staphylococcus aureus small-colony variants (SCVs) and biofilms are linked to chronic infections. It is known that the presence of aminoglycoside antibiotics may contribute to the emergence of SCVs and it is thought that molecular mechanisms are involved in the ability of S. aureus to adopt this phenotype. No study has addressed the possible role of the stress- and colonization-related alternative sigma factor B (SigB) in the emergence of SCVs, although a sustained SigB activity was reported in these variants. Here, we demonstrate that SigB is involved in the emergence of SCVs resulting from an exposure to a sub-inhibitory concentration of aminoglycosides. Monitoring of gene expression in an aminoglycoside-treated prototypical strain or in clinical SCVs showed the activation of SigB, whereas the accessory gene regulator (agr) system was not. Furthermore, gentamicin-treated prototypical bacteria and SCVs had an increased ability to form biofilm only in a SigB functional background. The administration of a sub-inhibitory concentration of gentamicin significantly increased the formation of SCVs for a prototypical strain but not for the sigB mutant in a mouse model of S. aureus-induced mastitis. Collectively, our results show that SigB may positively influence the appearance of S. aureus SCVs and the production of biofilm upon aminoglycoside exposure.


Subject(s)
Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/physiology , Biofilms/growth & development , Gene Expression Regulation, Bacterial , Sigma Factor/physiology , Staphylococcus aureus/drug effects , Stress, Physiological , Animals , Colony Count, Microbial , Gene Expression Profiling , Mastitis/microbiology , Mice , Staphylococcus aureus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...