Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 87(5)2021 03 01.
Article in English | MEDLINE | ID: mdl-33355112

ABSTRACT

Nitrogen is among the essential nutriments that govern interactions between yeast species in the wine environment. A thorough knowledge of how these yeasts assimilate the nitrogen compounds of grape juice is an important prerequisite for a successful co- or sequential fermentation. In the present study, we investigated the efficiency of 18 nitrogen sources for sustaining the growth and fermentation of two Starm. bacillaris strains displaying metabolic properties, compared to the reference yeast S. cerevisiae The analysis of growth and fermentation parameters provided a comprehensive picture of Starm. bacillaris preferences with respect to nitrogen sources for sustained growth and fermentation. Important differences were observed in S. cerevisiae regarding rates, final population and CO2 production. In particular, Lys and His supported substantial Starm. bacillaris growth and fermentation contrary to S. cerevisiae, while only 3 nitrogen sources, Arg, NH4+ and Ser, promoted S. cerevisiae growth more efficiently than that of Starm. bacillaris strains. Furthermore, Starm. bacillaris strains displayed a higher fermentative activity than S. cerevisiae during the first phase of culture with Gly or Thr, when the former species consumed solely fructose. Finally, no correlation has been shown between the ability of nitrogen sources to support growth and their fermentation efficiency. The specificities of Starm. bacillaris regarding nitrogen sources preferences are related to its genetic background, but further investigations are needed to elucidate the molecular mechanisms involved. These data are essential elements to be taken into account in order to make the best use of the potential of the two species.IMPORTANCE Mixed fermentations combining non-Saccharomyces and S. cerevisiae strains are increasingly implemented in the wine sector as they offer promising opportunities to diversify the flavour profile of end-products. However, competition for nutrients between species can cause fermentation problems, which is a severe hindrance to the development of these approaches. With the knowledge provided in this study on the nitrogen preferences of Starm. bacillaris, winemakers will be able to set up a nitrogen nutrition scheme adapted to the requirement of each species during mixed fermentation, through must supplementation with relevant nitrogen compounds. This will prevent nitrogen depletion or competition between yeasts for nitrogen sources, and consequently potential issues during fermentation. The data of this study highlight the importance of an appropriate nitrogen resource management during co- or sequential fermentation for fully exploiting the phenotypic potential of non-Saccharomyces yeasts.

2.
Microorganisms ; 8(6)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560056

ABSTRACT

Non-Saccharomyces yeast strains have become increasingly prevalent in the food industry, particularly in winemaking, because of their properties of interest both in biological control and in complexifying flavour profiles in end-products. However, unleashing the full potential of these species would require solid knowledge of their physiology and metabolism, which is, however, very limited to date. In this study, a quantitative analysis using 15N-labelled NH4Cl, arginine, and glutamine, and 13C-labelled leucine and valine revealed the specificities of the nitrogen metabolism pattern of two non-Saccharomyces species, Torulaspora delbrueckii and Metschnikowia pulcherrima. In T. delbrueckii, consumed nitrogen sources were mainly directed towards the de novo synthesis of proteinogenic amino acids, at the expense of volatile compounds production. This redistribution pattern was in line with the high biomass-producer phenotype of this species. Conversely, in M. pulcherrima, which displayed weaker growth capacities, a larger proportion of consumed amino acids was catabolised for the production of higher alcohols through the Ehrlich pathway. Overall, this comprehensive overview of nitrogen redistribution in T. delbrueckii and M. pulcherrima provides valuable information for a better management of co- or sequential fermentation combining these species with Saccharomyces cerevisiae.

3.
Front Microbiol ; 11: 305, 2020.
Article in English | MEDLINE | ID: mdl-32184771

ABSTRACT

Non-Saccharomyces yeasts are currently widely used in winemaking to enhance aroma profile diversity among wines. The use of Metschnikowia pulcherrima in sequential inoculation with S. cerevisiae was compared to the inoculation of a pure culture of S. cerevisiae. Moreover, various concentrations of sugar, nitrogen and lipids were tested in synthetic must to assess their impact on fermentation and its outcomes using a Box-Behnken design. Due to its phenotypic specificities, early inoculation with M. pulcherrima led to important modifications, first altering the fermentation kinetics. This may relate, at least in part, to the depletion of some nitrogen sources by M. pulcherrima during the first part of fermentation. Beyond these negative interactions on fermentation performance, comparisons between pure cultures and sequentially inoculated cultures revealed changes in the distribution of carbon fluxes during fermentation in presence of M. pulcherrima, resulting in a positive impact on the production of central carbon metabolites and aromas. Furthermore, the expression of varietal thiols was strongly increased as a consequence of positive interactions between the two species. The mechanism of this release still needs to be investigated. Significant differences in the final concentrations of fermentative and varietal aromas depending on the initial must composition were obtained under both inoculation strategies. Interestingly, the response to changes in nutrient availability varied according to the inoculation modality. In particular, a greater incidence of lipids on the production of fatty acids and their ethyl esters derivatives was found during sequential fermentation compared with pure culture, to be viewed in combination with the metabolic characteristics of M. pulcherrima regarding the production of volatile compounds from acetyl-CoA. Overall, the importance of managing nutrient availability under M. pulcherrima/S. cerevisiae sequential inoculation in order to derive the maximum benefit from the potentialities of the non-Saccharomyces species while carrying out fermentation to dryness was highlighted.

4.
Food Microbiol ; 85: 103287, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31500707

ABSTRACT

Wine-related non-Saccharomyces yeasts are becoming more widely used in oenological practice for their ability to confer wine a more complex satisfying aroma, but their metabolism remains unknown. Our study explored the nitrogen utilisation profile of three popular non-Saccharomyces species, Torulaspora delbrueckii, Metschnikowia pulcherrima and Metschnikowia fructicola. The nitrogen source preferences to support growth and fermentation as well as the uptake order of different nitrogen sources during wine fermentation were investigated. While T. delbrueckii and S. cerevisiae strains shared the same nitrogen source preferences, Metschnikowia sp. Displayed a lower capacity to efficiently use the preferred nitrogen compounds, but were able to assimilate a wider range of amino acids. During alcoholic fermentation, the non-Saccharomyces strains consumed different nitrogen sources in a similar order as S. cerevisiae, but not as quickly. Furthermore, when all the nitrogen sources were supplied in the same amount, their assimilation order was similarly affected for both S. cerevisiae and non-Saccharomyces strains. Under this condition, the rate of nitrogen source consumption of non-Saccharomyces strains and S. cerevisiae was comparable. Overall, this study expands our understanding about the preferences and consumption rates of individual nitrogen sources by the investigated non-Saccharomyces yeasts in a wine environment. This knowledge provides useful information for a more efficient exploitation of non-Saccharomyces strains that improves the management of the wine fermentation.


Subject(s)
Fermentation , Nitrogen/metabolism , Wine/microbiology , Yeasts/growth & development , Yeasts/metabolism , Amino Acids/metabolism , Metschnikowia/growth & development , Odorants , Saccharomyces cerevisiae , Torulaspora/growth & development
5.
Int J Food Microbiol ; 316: 108441, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31778839

ABSTRACT

Even though non-Saccharomyces yeasts were regarded as spoilage microorganisms for a long time, their abilities to improve and diversify the aromatic profile of wines are now well recognized. Consequently, their use in combination with S. cerevisiae strains during winemaking has attracted substantial attention over the last decade. However, our limited understanding of the metabolism and physiology of these species remains a barrier to promoting efficient exploitation of their full potential. In this study, we further explored the metabolism involved in the production of fermentative volatile compounds of two commercial non-Saccharomyces strains, T. delbrueckii Biodiva™ and M. pulcherrima Flavia®, in comparison with the reference wine yeast S. cerevisiae Lalvin EC1118®. After growing these strains in the presence of 24 different N-compounds, particular attention was paid to the influence of the nitrogen source on the profile of aroma compounds synthesized by these yeasts (higher alcohols and acids, medium-chain fatty acids and their acetate or ethyl esters derivatives). A comprehensive analysis of the dataset showed that these three species were able to produce all the fermentative aromas, regardless of the nitrogen source, demonstrating the key contribution of the central carbon metabolism to the formation of volatile molecules. Nevertheless, we also observed some specific phenotypic traits for each of the strains in their assimilation capacities for the various nitrogen nutrients as well as in their response to the nature of the nitrogen source in terms of the production of volatile molecules. These observations revealed the intricacy and interconnection between the networks involved in nitrogen consumption and aroma production. These differences are likely related to the genetic backgrounds of the strains. Overall, this study expands our understanding of the metabolic processes responsible for the formation of volatile compounds during wine fermentation and their variations according to species and the nature of the nitrogen source. This knowledge provides a new platform for the more efficient exploitation of non-Saccharomyces strains during winemaking, improving the management of the fermentation.


Subject(s)
Nitrogen/metabolism , Odorants , Saccharomycetales/metabolism , Volatile Organic Compounds/metabolism , Fermentation , Odorants/analysis , Phenotype , Saccharomyces cerevisiae/metabolism , Saccharomycetales/classification , Species Specificity , Volatile Organic Compounds/analysis , Wine/analysis , Wine/microbiology
6.
Food Microbiol ; 76: 29-39, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30166153

ABSTRACT

During alcoholic fermentation, many parameters, including the nitrogen composition of the must, can affect aroma production. The aim of this study was to examine the impact of several types of nitrogen sources added at different times during fermentation. Nitrogen was added as ammonium or a mixture of amino acids at the beginning of fermentation or at the start of the stationary phase. These conditions were tested with two Saccharomyces cerevisiae strains that have different nitrogen requirements. The additions systematically reduced the fermentation duration. The aroma production was impacted by both the timing of the addition and the composition of the nitrogen source. Propanol appeared to be a metabolic marker of the presence of assimilable nitrogen in the must. The production of ethyl esters was slightly higher after the addition of any type of nitrogen; the production of higher alcohols other than propanol was unchanged, and acetate esters were overproduced due to the overexpression of the genes ATF1 and ATF2. Finally the parameter affecting the most the synthesis of beneficial aromas was the addition timing: The supply of organic nitrogen at the beginning of the stationary phase was more favorable for the synthesis of beneficial aromas.


Subject(s)
Nitrogen/pharmacology , Odorants/analysis , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Wine/microbiology , Acetyltransferases/drug effects , Acetyltransferases/genetics , Alcohols/metabolism , Amino Acids/metabolism , Amino Acids/pharmacology , Ammonium Compounds/metabolism , Ammonium Compounds/pharmacology , Culture Media/chemical synthesis , Esters/metabolism , Fermentation , Kinetics , Nitrogen/metabolism , Proteins/drug effects , Proteins/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/drug effects , Saccharomyces cerevisiae Proteins/genetics , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Wine/analysis
7.
J Vis Exp ; (131)2018 01 22.
Article in English | MEDLINE | ID: mdl-29443074

ABSTRACT

Studies in the field of microbiology rely on the implementation of a wide range of methodologies. In particular, the development of appropriate methods substantially contributes to providing extensive knowledge of the metabolism of microorganisms growing in chemically defined media containing unique nitrogen and carbon sources. In contrast, the management through metabolism of multiple nutrient sources, despite their broad presence in natural or industrial environments, remains virtually unexplored. This situation is mainly due to the lack of suitable methodologies, which hinders investigations. We report an experimental strategy to quantitatively and comprehensively explore how metabolism operates when a nutrient is provided as a mixture of different molecules, i.e., a complex resource. Here, we describe its application for assessing the partitioning of multiple nitrogen sources through the yeast metabolic network. The workflow combines information obtained during stable isotope tracer experiments using selected 13C- or 15N-labeled substrates. It first consists of parallel and reproducible fermentations in the same medium, which includes a mixture of N-containing molecules; however,a selected nitrogen source is labeled each time. A combination of analytical procedures (HPLC, GC-MS) is implemented to assess the labeling patterns of targeted compounds and to quantify the consumption and recovery of substrates in other metabolites. An integrated analysis of the complete dataset provides an overview of the fate of consumed substrates within cells. This approach requires an accurate protocol for the collection of samples-facilitated by a robot-assisted system for online monitoring of fermentations-and the achievement of numerous time-consuming analyses. Despite these constraints, it allowed understanding, for the first time, the partitioning of multiple nitrogen sources throughout the yeast metabolic network. We elucidated the redistribution of nitrogen from more abundant sources toward other N-compounds and determined the metabolic origins of volatile molecules and proteinogenic amino acids.


Subject(s)
Carbon Isotopes/metabolism , Gas Chromatography-Mass Spectrometry/methods , Isotope Labeling/methods , Carbon Isotopes/analysis , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...