Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34835803

ABSTRACT

Highly ordered nanostructure arrays have attracted wide attention due to their wide range of applicability, particularly in fabricating devices containing scalable and controllable junctions. In this work, highly ordered carbon nanotube (CNT) arrays grown directly on Si substrates were fabricated, and their electronic transport properties as a function of wall thickness were explored. The CNTs were synthesized by chemical vapor deposition inside porous alumina membranes, previously fabricated on n-type Si substrates. The morphology of the CNTs, controlled by the synthesis parameters, was characterized by electron microscopies and Raman spectroscopy, revealing that CNTs exhibit low crystallinity (LC). A study of conductance as a function of temperature indicated that the dominant electric transport mechanism is the 3D variable range hopping. The electrical transport explored by I-V curves was approached by an equivalent circuit based on a Schottky diode and resistances related to the morphology of the nanotubes. These junction arrays can be applied in several fields, particularly in this work we explored their performance in gas sensing mode and found a fast and reliable resistive response at room temperature in devices containing LC-CNTs with wall thickness between 0.4 nm and 1.1 nm.

2.
Nanoscale Res Lett ; 9(1): 207, 2014.
Article in English | MEDLINE | ID: mdl-24910571

ABSTRACT

The hybrid structures composed of gold nanoparticles and carbon nanotubes were prepared using porous alumina membranes as templates. Carbon nanotubes were synthesized inside the pores of these templates by the non-catalytic decomposition of acetylene. The inner cavity of the supported tubes was used as nanoreactors to grow gold particles by impregnation with a gold salt, followed by a calcination-reduction process. The samples were characterized by transmission electron microscopy and X-ray energy dispersion spectroscopy techniques. The resulting hybrid products are mainly encapsulated gold nanoparticles with different shapes and dimensions depending on the concentration of the gold precursor and the impregnation procedure. In order to understand the electronic transport mechanisms in these nanostructures, their conductance was measured as a function of temperature. The samples exhibit a 'non-metallic' temperature dependence where the dominant electron transport mechanism is 1D hopping. Depending on the impregnation procedure, the inclusion of gold nanoparticles inside the CNTs can introduce significant changes in the structure of the tubes and the mechanisms for electronic transport. The electrical resistance of these hybrid structures was monitored under different gas atmospheres at ambient pressure. Using this hybrid nanostructures, small amounts of acetylene and hydrogen were detected with an increased sensibility compared with pristine carbon nanotubes. Although the sensitivity of these hybrid nanostructures is rather low compared to alternative sensing elements, their response is remarkably fast under changing gas atmospheres.

3.
J Nanosci Nanotechnol ; 11(11): 10036-46, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22413342

ABSTRACT

Carbon nanostructures were synthesized by decomposition of different carbon sources over an alumina supported palladium catalyst via Chemical Vapor Deposition (CVD). Several experimental conditions were varied to verify their influence in the synthesis products: temperature ramping rate, pre-annealing conditions, hydrogen pre-treatment, synthesis temperature and time, together with the use of different carbon sources. Depending on the experimental conditions carbon nanotubes and nanofibers with different shapes and structural characteristics were obtained. Straight, coiled and branched morphologies are the most common. Among our findings, the addition of hydrogen plays a significant role in the structure of the carbonaceous products. For example, the decomposition of acetylene on palladium catalysts at 800 degrees C in the absence of hydrogen produces only carbon micro- spheres as synthesis products. The incorporation of increasing amounts of hydrogen modifies the outcome, from thick fibers to carbon nanotubes. To verify the level of graphitization of the synthesis products we have used high resolution transmission electron microscopy (HRTEM) in addition to Raman spectroscopy. Our results, based on these complementary techniques, indicate the decomposition of acetylene on a palladium based catalyst, produces the best degree of graphitization in carbon nanotubes for a temperature of 800 degrees C and 100 cc/min of hydrogen flow. Similar hydrogen flows on the same catalyst, produced highly graphitized nanofibers by the decomposition of methane at 850 degrees C.


Subject(s)
Carbon/chemistry , Nanostructures/chemistry , Nanotechnology/methods , Palladium/chemistry , Acetylene/chemistry , Aluminum Oxide/chemistry , Catalysis , Hot Temperature , Hydrogen/chemistry , Methane/chemistry , Microscopy, Electron, Transmission , Nanostructures/ultrastructure , Spectrum Analysis, Raman
4.
J Nanosci Nanotechnol ; 6(7): 1945-53, 2006 Jul.
Article in English | MEDLINE | ID: mdl-17025107

ABSTRACT

Carbon nanotubes (CNTs) were synthesized by Chemical Vapor Deposition (CVD) from the pyrolytic decomposition of Iron Phthalocyanine (FePc) molecules, on SiO2/Si(111) substrates in the presence of a hydrogen flow. FePc molecules contribute simultaneously both to the formation of the precursor Fe nanoparticles and also as a Carbon source. Different experimental conditions were examined. Samples were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, and inverse photoemission. The resulting samples are highly oriented multiwall carbon nanotubes films, with heights in the range between: 4 and 20 microm. The tubes diameter is strongly dependent on growth temperature. Our experimental results show evidence of a transition in the growth mechanism, from a tip growth to a base growth mode, as the decomposition temperature is increased. Preliminary spectroscopic measurements performed on these MWCNTs, show the unoccupied density of states has several resonances close to Fermi level, related both to the graphene electronic structure and the formation of the tube.


Subject(s)
Crystallization/methods , Ferrous Compounds/chemistry , Hot Temperature , Indoles/chemistry , Nanotechnology/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Chemical Fractionation/methods , Ferrous Compounds/radiation effects , Indoles/radiation effects , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Spectrum Analysis , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...