Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 37(22): 4258-4260, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34014278

ABSTRACT

SUMMARY: The web platform 3DBionotes-WS integrates multiple web services and an interactive web viewer to provide a unified environment in which biological annotations can be analyzed in their structural context. Since the COVID-19 outbreak, new structural data from many viral proteins have been provided at a very fast pace. This effort includes many cryogenic electron microscopy (cryo-EM) studies, together with more traditional ones (X-rays, NMR), using several modeling approaches and complemented with structural predictions. At the same time, a plethora of new genomics and interactomics information (including fragment screening and structure-based virtual screening efforts) have been made available from different servers. In this context, we have developed 3DBionotes-COVID-19 as an answer to: (i) the need to explore multiomics data in a unified context with a special focus on structural information and (ii) the drive to incorporate quality measurements, especially in the form of advanced validation metrics for cryo-EM. AVAILABILITY AND IMPLEMENTATION: https://3dbionotes.cnb.csic.es/ws/covid19. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
COVID-19 , Software , Humans , Genomics
2.
PLoS One ; 5(8): e12352, 2010 Aug 23.
Article in English | MEDLINE | ID: mdl-20808810

ABSTRACT

BACKGROUND: It is well established that only a portion of residues that mediate protein-protein interactions (PPIs), the so-called hot spot, contributes the most to the total binding energy, and thus its identification is an important and relevant question that has clear applications in drug discovery and protein design. The experimental identification of hot spots is however a lengthy and costly process, and thus there is an interest in computational tools that can complement and guide experimental efforts. PRINCIPAL FINDINGS: Here, we present Presaging Critical Residues in Protein interfaces-Web server (http://www.bioinsilico.org/PCRPi), a web server that implements a recently described and highly accurate computational tool designed to predict critical residues in protein interfaces: PCRPi. PRCPi depends on the integration of structural, energetic, and evolutionary-based measures by using Bayesian Networks (BNs). CONCLUSIONS: PCRPi-W has been designed to provide an easy and convenient access to the broad scientific community. Predictions are readily available for download or presented in a web page that includes among other information links to relevant files, sequence information, and a Jmol applet to visualize and analyze the predictions in the context of the protein structure.


Subject(s)
Computational Biology , Internet , Proteins/chemistry , Proteins/metabolism , User-Computer Interface , Computer Graphics , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...