Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Article in English | MEDLINE | ID: mdl-33443173

ABSTRACT

Microbial activity in planktonic systems creates a dynamic and heterogeneous microscale seascape that harbors a diverse community of microorganisms and ecological interactions of global significance. In recent decades great effort has been put into understanding this complex system, particularly focusing on the role of chemical patchiness, while overlooking a physical parameter that governs microbial life and is affected by biological activity: viscosity. Here we reveal spatial heterogeneity of viscosity in planktonic systems by using microrheological techniques that allow measurement of viscosity at length scales relevant to microorganisms. We show the viscous nature and the spatial extent of the phycosphere, the region surrounding phytoplankton. In ∼45% of the phytoplankton cells analyzed we detected increases in viscosity that extended up to 30 µm away from the cell with up to 40 times the viscosity of seawater. We also show how these gradients of viscosity can be amplified around a lysing phytoplankton cell as its viscous contents leak away. Finally, we report conservative estimates of viscosity inside marine aggregates, hotspots of microbial activity, more than an order of magnitude higher than in seawater. Since the diffusivities of dissolved molecules, particles, and microorganisms are inversely related to viscosity, microheterogeneity in viscosity alters the microscale distribution of microorganisms and their resources, with pervasive implications for the functioning of the planktonic ecosystem. Increasing viscosities impacts ecological interactions and processes, such as nutrient uptake, chemotaxis, and particle encounter, that occur at the microscale but influence carbon and nutrient cycles at a global scale.


Subject(s)
Phytoplankton/growth & development , Plankton/growth & development , Rheology/methods , Chemotaxis , Ecosystem , Phytoplankton/metabolism , Plankton/metabolism , Seawater/chemistry , Viscosity
2.
PLoS One ; 11(4): e0154050, 2016.
Article in English | MEDLINE | ID: mdl-27111067

ABSTRACT

Here we present, for the first time, the elemental concentration, including C, N and O, of single phytoplankton cells collected from the sea. Plankton elemental concentration and stoichiometry are key variables in phytoplankton ecophysiology and ocean biogeochemistry, and are used to link cells and ecosystems. However, most field studies rely on bulk techniques that overestimate carbon and nitrogen because the samples include organic matter other than plankton organisms. Here we used X-ray microanalysis (XRMA), a technique that, unlike bulk analyses, gives simultaneous quotas of C, N, O, Mg, Si, P, and S, in single-cell organisms that can be collected directly from the sea. We analysed the elemental composition of dinoflagellates and diatoms (largely Chaetoceros spp.) collected from different sites of the Catalan coast (NW Mediterranean Sea). As expected, a lower C content is found in our cells compared to historical values of cultured cells. Our results indicate that, except for Si and O in diatoms, the mass of all elements is not a constant fraction of cell volume but rather decreases with increasing cell volume. Also, diatoms are significantly less dense in all the measured elements, except Si, compared to dinoflagellates. The N:P ratio of both groups is higher than the Redfield ratio, as it is the N:P nutrient ratio in deep NW Mediterranean Sea waters (N:P = 20-23). The results suggest that the P requirement is highest for bacterioplankton, followed by dinoflagellates, and lowest for diatoms, giving them a clear ecological advantage in P-limited environments like the Mediterranean Sea. Finally, the P concentration of cells of the same genera but growing under different nutrient conditions was the same, suggesting that the P quota of these cells is at a critical level. Our results indicate that XRMA is an accurate technique to determine single cell elemental quotas and derived conversion factors used to understand and model ocean biogeochemical cycles.


Subject(s)
Diatoms/classification , Dinoflagellida/classification , Mediterranean Sea
SELECTION OF CITATIONS
SEARCH DETAIL
...