Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nanotechnology ; 27(35): 355703, 2016 Sep 02.
Article in English | MEDLINE | ID: mdl-27454897

ABSTRACT

In this work, GaN/InGaN/GaN nanocolumns (NCs) have been grown by molecular beam epitaxy. Selective area growth (SAG) and self-organized growth (SOG) were performed simultaneously in patterned and unpatterned regions of the same substrate, respectively. The resulting structures show different tip morphologies and structural properties due to the different polarity along the growth direction, namely Ga-polar with r-plane faceted tips for the SAG NCs and N-polar with c-plane top facet for the SOG ones. When growing Ga-polar GaN/InGaN NCs, no indium is incorporated at a substrate temperature of [Formula: see text]°C. Rather, indium incorporation takes place under the same growth conditions on the N-polar NCs. The In-incorporation is investigated by means of nano x-ray fluorescence and diffraction, high-angle annular dark-field scanning transmission electron microscopy and high-resolution transmission electron microscopy.

2.
Nano Lett ; 14(3): 1300-5, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24502255

ABSTRACT

In this work, we report on the composition, short- and long-range structural order of single molecular beam epitaxy grown In(x)Ga(1-x)N nanowires using a hard X-ray synchrotron nanoprobe. Nano-X-ray fluorescence mapping reveals an axial and radial heterogeneous elemental distribution in the single wires with Ga accumulation at their bottom and outer regions. Polarization-dependent nano-X-ray absorption near edge structure demonstrates that despite the elemental modulation, the tetrahedral order around the Ga atoms remains along the nanowires. Nano-X-ray diffraction mapping on single nanowires shows the existence of at least three different phases at their bottom: an In-poor shell and two In-rich phases. The alloy homogenizes toward the top of the wires, where a single In-rich phase is observed. No signatures of In-metallic precipitates are observed in the diffraction spectra. The In-content along the single nanowires estimated from X-ray fluorescence and diffraction data are in good agreement. A rough picture of these phenomena is briefly presented. We anticipate that this methodology will contribute to a greater understanding of the underlying growth concepts not only of nanowires but also of many nanostructures in materials science.


Subject(s)
Nanowires/chemistry , Nanowires/ultrastructure , Synchrotrons , Gallium/chemistry , Indium/chemistry , X-Rays
3.
Nanotechnology ; 25(7): 075705, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24457628

ABSTRACT

The elemental distribution of self-organized In-rich In(x)Ga1-xN nanowires grown by plasma-assisted molecular beam epitaxy has been investigated using three different techniques with spatial resolution on the nanoscale. Two-dimensional images and elemental profiles of single nanowires obtained by x-ray fluorescence and energy-dispersive x-ray spectroscopy, respectively, have revealed a radial gradient in the alloy composition of each individual nanowire. The spectral selectivity of resonant Raman scattering has been used to enhance the signal from very small volumes with different elemental composition within single nanowires. The combination of the three techniques has provided sufficient sensitivity and spatial resolution to prove the spontaneous formation of a core­shell nanowire and to quantify the thicknesses and alloy compositions of the core and shell regions. A theoretical model based on continuum elastic theory has been used to estimate the strain fields present in such inhomogeneous nanowires. These results suggest new strategies for achieving high quality nonpolar heterostructures.

4.
Nano Lett ; 11(12): 5322-6, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22007972

ABSTRACT

We report on the local structure of single Co-implanted ZnO nanowires studied using a hard X-ray nanoprobe. X-ray fluorescence maps show uniform Zn and Co distributions along the wire within the length scale of the beam size. The X-ray fluorescence data allow the estimation of the Co content within the nanowire. Polarization dependent X-ray absorption near edge structure shows no structural disorder induced neither in the radial nor axial directions of the implanted nanowires after subsequent annealing. Co2+ ions occupy Zn sites into the wurtzite ZnO lattice. Extended X-ray absorption fine structure data reveal high structural order in the host lattice without distortion in their interatomic distances, confirming the recovery of the radiation damaged ZnO structure through thermal annealing.

SELECTION OF CITATIONS
SEARCH DETAIL