Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 491(1): 18-22, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21215291

ABSTRACT

A spinal cord hemi-section with a homologous transplant of medullar tissue at the level of C5-C6 and preservation of the anterior spinal artery was used to evaluate the histological characteristics such as quantity and quality of axons, myelin index and blood vessels after quadriplegia recovery. Vascular changes after spinal injury results in severe endothelial damage, axonal edema, neuronal necrosis and demyelinization as well as cysts and infarction. Preservation of the anterior spinal artery has demonstrated clinical recuperation; therefore, in addition to the lesion we included a homologous transplant to visualize changes at a cellular level. Two groups of dogs (hemi-section and transplant) went through a traumatic spinal cord hemi-section of 50% at the level of C5-C6. The transplant group formed by animals which simultaneously had 4 mm of spinal cord removed and the equal amount substituted from a donor animal at the level of C5-C6 corresponding to the half right side; both preserving the anterior spinal artery. Histological evaluation of all groups took place at days 3 (acute) and 28 (chronic) post-operation. Changes of degeneration and axonal regeneration were found in the hemi-section and transplant groups at acute and chronic time, as well as same quadriplegia recovery at chronic time in the hemi-section and transplant groups which closely related to mechanisms which participate in regeneration and functional recuperation due to the preservation of the anterior spinal artery and presence of new blood vessels.


Subject(s)
Nerve Regeneration/physiology , Quadriplegia/surgery , Recovery of Function/physiology , Spinal Cord Injuries/surgery , Spinal Cord/transplantation , Animals , Disease Models, Animal , Dogs , Male , Quadriplegia/physiopathology , Spinal Cord/blood supply , Spinal Cord/physiopathology , Spinal Cord Injuries/physiopathology , Tissue Transplantation/methods
2.
Neurosci Lett ; 403(3): 233-8, 2006 Aug 07.
Article in English | MEDLINE | ID: mdl-16782274

ABSTRACT

Excitotoxic neuronal death occurs through the activation of NMDA and non-NMDA glutamatergic receptors in the CNS. Glutamate also induces strong activation of p38 and indeed, cell death can be prevented by inhibitors of the p38 pathway. Furthermore, intracellular signals generated by AMPA receptors activate the stress sensitive MAP kinases implicated in apoptotic neuronal death, such as JNK and p38. To investigate the relationship between these elements, we have used immunohistochemistry to analyze the expression of GluR2 in the cerebral cortex of postnatal rats (postnatal Day [PD] 8 and 14) after administering them with monosodium glutamate (MSG; 4 mg/g body weight on PD1, 3, 5, and 7). Similarly, the expression of REST, Fas-L and Bcl-2 mRNA transcripts in animals exposed to a p38 inhibitor, SB203580 (0.42 microg/g body weight, administered subcutaneously) was determined by reverse transcriptase-PCR. The enhanced GluR2-expression in the cerebral cortex at PD8 and the down regulation of this receptor at PD14 was correlated with neuronal damage induced by excitotoxicity. In addition, the enhanced expression of REST at PD8 and PD14 suggests that the induction of REST transcription contributes to glutamate-induced excitotoxic neurodegeneration, possibly by modulating GluR2 expression. Fas-L and Bcl-2 over expression at PD8 and their subsequent down regulation at PD14 also suggests that Fas-L could be the direct effector of apoptosis in the cerebral cortex. On the other hand, the presence of Bcl-2 at PD8 could attenuate certain survival signals in neurons under these neurotoxic conditions. Thus, a change in glutamate receptor composition, and enhanced Fas-L and Bcl-2 expression, coupled with activation of the p38/SAPK pathway appear to be events involved in the neuronal apoptosis induced under neurotoxic conditions.


Subject(s)
Cerebral Cortex/metabolism , Glutamic Acid/physiology , Neurons/physiology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Animals, Newborn , Cell Death , Enzyme Activation , Fas Ligand Protein , Female , Glutamic Acid/toxicity , Immunohistochemistry , Membrane Glycoproteins/biosynthesis , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Wistar , Receptors, AMPA/biosynthesis , Sodium Glutamate/toxicity , Tumor Necrosis Factors/biosynthesis , fas Receptor/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...