Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
4.
Front Cell Dev Biol ; 12: 1353860, 2024.
Article in English | MEDLINE | ID: mdl-38601081

ABSTRACT

Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.

5.
Phytomedicine ; 127: 155466, 2024 May.
Article in English | MEDLINE | ID: mdl-38461764

ABSTRACT

BACKGROUND: The heme oxygenase (HO) system plays a significant role in neuroprotection and reduction of neuroinflammation and neurodegeneration. The system, via isoforms HO-1 and HO-2, regulates cellular redox balance. HO-1, an antioxidant defense enzyme, is highlighted due to its association with depression, characterized by heightened neuroinflammation and impaired oxidative stress responses. METHODOLOGY: We observed the pathophysiology of HO-1 and phytochemicals as its modulator. We explored Science Direct, Scopus, and PubMed for a comprehensive literature review. Bibliometric and temporal trend analysis were done using VOSviewer. RESULTS: Several phytochemicals can potentially alleviate neuroinflammation and oxidative stress-induced depressive symptoms. These effects result from inhibiting the MAPK and NK-κB pathways - both implicated in the overproduction of pro-inflammatory factors - and from the upregulation of HO-1 expression mediated by Nrf2. Bibliometric and temporal trend analysis further validates these associations. CONCLUSION: In summary, our findings suggest that antidepressant agents can mitigate neuroinflammation and depressive disorder pathogenesis via the upregulation of HO-1 expression. These agents suppress pro-inflammatory mediators and depressive-like symptoms, demonstrating that HO-1 plays a significant role in the neuroinflammatory process and the development of depression.


Subject(s)
Heme Oxygenase-1 , Neuroinflammatory Diseases , Humans , Heme Oxygenase-1/metabolism , Depression/drug therapy , Heme Oxygenase (Decyclizing)/metabolism , Antioxidants/pharmacology , Oxidative Stress , NF-E2-Related Factor 2/metabolism
6.
Neurotox Res ; 41(6): 698-707, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37847429

ABSTRACT

Alzheimer's disease contributes to 60-70% of all dementia cases in the general population. Belonging to the BIN1/amphiphysin/RVS167 (BAR) superfamily, the bridging integrator (BIN1) has been identified to impact two major pathological hallmarks in Alzheimer's disease (AD), i.e., amyloid beta (Aß) and tau accumulation. Aß accumulation is found to increase by BIN1 knockdown in cortical neurons in late-onset AD, due to BACE1 accumulation at enlarged early endosomes. Two BIN1 mutants, KR and PL, were identified to exhibit Aß accumulation. Furthermore, BIN1 deficiency by BIN1-related polymorphisms impairs the interaction with tau, thus elevating tau phosphorylation, altering synapse structure and tau function. Even though the precise role of BIN1 in the neuronal tissue needs further investigation, the authors aim to throw light on the potential of BIN1 and unfold its implications on tau and Aß pathology, to aid AD researchers across the globe to examine BIN1, as an appropriate target gene for disease management.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid Precursor Protein Secretases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Aspartic Acid Endopeptidases/metabolism , tau Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
7.
Int J Biol Macromol ; 253(Pt 1): 126595, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37648139

ABSTRACT

Cancer is one of the most widespread and severe diseases with a huge mortality rate. In recent years, the second-leading mortality rate of any cancer globally has been breast cancer, which is one of the most common and deadly cancers found in women. Detecting breast cancer in its initial stages simplifies treatment, decreases death risk, and recovers survival rates for patients. The death rate for breast cancer has risen to 0.024 % in some regions. Sensitive and accurate technologies are required for the preclinical detection of BC at an initial stage. Biomarkers play a very crucial role in the early identification as well as diagnosis of women with breast cancer. Currently, a wide variety of cancer biomarkers have been discovered for the diagnosis of cancer. For the identification of these biomarkers from serum or other body fluids at physiological amounts, many detection methods have been developed. In the case of breast cancer, biomarkers are especially helpful in discovering those who are more likely to develop the disease, determining prognosis at the time of initial diagnosis and choosing the best systemic therapy. In this study we have compiled various clinical aspects and signaling pathways associated with protein-based biomarkers and gene-based biomarkers.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Biomarkers, Tumor
8.
Curr Pharm Des ; 29(19): 1467-1485, 2023.
Article in English | MEDLINE | ID: mdl-37317922

ABSTRACT

Parkinson's disease (PD) is designated as a convoluted nerve cell devastating disorder that encompasses the profound declination of dopaminergic (DArgic) nerve cells of the mesencephalon region. The condition is sketched by four eminent motor manifestations, namely, slow movement, muscle tension, shaking, and disrupted balance, but the pathology behind these manifestations is still vague. Modern-day medicinal treatment emphasizes curbing the manifestations via introducing a gold standard (levodopa) instead of forestalling the DArgic nerve cell destruction. Therefore, the invention and utilization of novel neuroprotective candidates are of paramount importance in overcoming PD. Vitamins are organic molecules engaged in the modulation of evolution, procreation, biotransformation, and other operations of the body. Numerous studies employing varying experimental models have promulgated a prominent linkage between vitamins and PD. Vitamins, owing to their antioxidant and gene expression modulation abilities, might be efficacious in PD therapy. Recent corroborations depict that adequate augmentation of vitamins might de-escalate the manifestations and emergence of PD; however, the safety of daily vitamin intake must be considered. By assembling the comprehensive information obtained from existing publications via searching various renowned medical portals, the investigators render in-depth insights into the physiological association amongst vitamins (D, E, B3, and C) and PD and concerned pathological processes and their safeguarding actions in varied PD models. Furthermore, the manuscript delineates the remedial aptitude of vitamins in PD therapy. Conclusively, augmentation of vitamins (owing to their antioxidant and gene expression regulation capabilities) might appear as a novel and terribly efficacious ancillary therapeutic approach for PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , Vitamins/therapeutic use , Antioxidants/therapeutic use , Levodopa/therapeutic use , Vitamin A/therapeutic use , Vitamin K
9.
Inflammopharmacology ; 31(4): 1577-1588, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37335368

ABSTRACT

Rheumatoid arthritis is a systemic chronic polyarticular autoimmune disorder of joints and joint membrane mainly affecting feet and hands. The pathological manifestation of the disease includes infiltration of immune cells, hyperplasia of the lining of synovium, formation of pannus and bone and cartilage destruction. If left untreated, the appearance of small focal necrosis, adhesion of granulation, and formation of fibrous tissue on the surface of articular cartilage is noted. The disease primarily affects nearly 1% of the population globally, women being more affected than men with a ratio 2:1 and can initiate regardless of any age. The synovial fibroblast in rheumatoid arthritis individuals exhibits an aggressive phenotype which upregulates the manifestation of protooncogenes, adhesive compounds, inflammatory cytokines and matrix-deteriorating enzymes. Apart from the inflammatory effects of cytokines, chemokines are also noted to induce swelling and pain in arthritic individuals by residing in synovial membrane and forming pannus. The current treatment of rheumatoid arthritis includes treatment with non-steroidal anti-inflammatory drugs, disease-modifying antirheumatic drugs, treatment with biologics such as inhibitors of TNF-α, interleukins, platelet activating factor, etc. which provides significant relief from symptoms and aids in management of the disease. The current review highlights the pathogenesis involved in the onset of rheumatoid arthritis and also covers epigenetic, cellular and molecular parameters associated with it to aid better and advanced therapeutic approaches for management of the debilitating disease.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Female , Humans , Synovial Membrane , Antirheumatic Agents/pharmacology , Antirheumatic Agents/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Epigenesis, Genetic
10.
Biomedicines ; 11(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37371684

ABSTRACT

Psoriasis (PSO) is an inflammatory skin condition that causes a variety of diseases and significantly decreases the life characteristics of patients, and substantially diminishes patients' quality of life. PSO usually impairs the skin and is linked to various disorders. Inflammation pathology does not only damage psoriatic skin; it shows how PSO impinges other body parts. Many variables interact with one another and can impact the etiology of psoriasis directly or indirectly. PSO has an effect on approximately 2% of the world's population, and significant progress has been made in comprehending and treating the alternative PSO by novel drug delivery systems. Topical, systemic, biological, biomaterials, and phototherapy are some of the useful therapies for PSO. Nonetheless, topical treatments remain the gold standard for treating moderate PSO. The applicability of several nanocarrier systems, such as lipid nanoparticles, metallic nanoparticles, and certain phytocompounds, has been briefly explored. The present review focuses mainly on traditional therapeutic strategies as well as on breakthroughs in nanoformulations and drug delivery methods for several anti-psoriatic drugs.

11.
Environ Sci Pollut Res Int ; 30(14): 39546-39557, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36790717

ABSTRACT

Medicinal plants are being used from time immemorial for their therapeutic benefits and have immense value in the therapy of neurodegenerative disorders. One of the most important neurological disorders is Alzheimer's disease (AD) which is a major contributor to dementia and is accompanied by abundant oxidative stress in the brain tissue. A critical pathway to target the increased oxidative stress is to administer agents with antioxidant potential. Despite currently available clinical treatments to treat AD such as cholinesterase inhibitors or NMDA antagonists which address only the symptoms and cannot hamper disease progression, no efficient available clinical treatment can break the vicious cycle of oxidative stress and neurodegeneration till date. The main objective of presenting this review is that traditional Chinese medicine (TCM) acts as a promising candidate in breaking this vicious cycle and improves the quality of life of the debilitating patients. The active constituents of various herbs in TCM including Angelica sinensis, Radix polygalae, Polygala tenuifolia, and members of the Lamiaceae family have acquired experience of managing oxidative stress as indicated in the review for more than a thousand years now, and the preclinical and clinical evidence of their therapeutic potential has been highlighted in the review. Most importantly, Chinese herbs provide a multiple-target approach rather than a single-target approach and thus can target multiple pathways involved in AD at once. The Chinese herbs can definitely untangle the issues in the current therapy regimen of AD.


Subject(s)
Alzheimer Disease , Drugs, Chinese Herbal , Humans , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Alzheimer Disease/drug therapy , Neuroprotection , Quality of Life , Oxidative Stress
12.
Article in English | MEDLINE | ID: mdl-36509251

ABSTRACT

Depression is the most prevalent and devastating neuropsychiatric disorder. There are several conventional antidepressants used for the treatment of depression. But due to their undesired adverse effects, patient compliance is very poor. Thus, developing novel medications for the treatment of depression is a critical strategic priority for meeting therapeutic demands. Current research is looking for alternatives to traditional antidepressants to reduce undesired side effects and increase efficacy. Phytoconstituents provide a wide research range in antidepressant treatments. In the present article, we have conducted a comprehensive assessment of neurological evidence, which supports the usefulness of phytoconstituents in the treatment of the depressive disorder. Secondary plant metabolites including alkaloids, polyphenols, glycosides, saponins, and terpenoids were found to exhibit antidepressant action. Most of the phytoconstituents were found to mediate their antidepressant effect through the upregulation of brain-derived neurotrophic factor (BDNF), serotonin, noradrenaline, and dopamine. Some were also found to exert antidepressant effects by inhibiting the monoamine oxidase (MAO) activity and hypothalamic-pituitary-adrenal (HPA) axis overactivity.


Subject(s)
Antidepressive Agents , Serotonin , Humans , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Depression/drug therapy
13.
Inflammopharmacology ; 31(1): 119-128, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36414831

ABSTRACT

In prosperous countries, autoimmune illnesses affect minimum 7% of the community. Rheumatoid Arthritis (RA) as an autoimmune illness is thought to be induced through a variety of genomic, physiological, and biological factors. Many experts in the field of nanomedicine have looked to stem cells as a viable strategy to repair human tissue; however, exosomes have demonstrated greater potential in recent years. Exosomes, produced from stem cells in particular, have exhibited a high propensity to give therapeutic effects. To resist local cellular stress, they are secreted in a paracrine manner from cells. As a result, exosomes produced from stem cells can provide enormous health uses. If treatment is not given, autoantibodies produce synovial inflammation and arthritis, which can lead to chronic inflammation, and impairment. Exosomes could be administered for the treatment of RA, by acting as therapeutic vectors. Exosomes are murine extracellular vesicles that influence biological mechanisms and signal transduction by transporting genetic and protein components. Diseases like RA and bone fractures could be treated using cell-free therapeutic strategies if exosomes could be isolated from stem cells efficiently and packaged with specific restorative substances. To get to this position, many breakthroughs must be achieved, and the following review summarises the most recent developments in stem cell-derived exosomes, with a focus on the important literature on exosome dynamics in RA.


Subject(s)
Arthritis, Rheumatoid , Exosomes , Humans , Animals , Mice , Exosomes/genetics , Exosomes/metabolism , Arthritis, Rheumatoid/metabolism , Inflammation/metabolism , Autoantibodies , Signal Transduction
14.
Ageing Res Rev ; 83: 101787, 2023 01.
Article in English | MEDLINE | ID: mdl-36368649

ABSTRACT

The amyloid precursor protein (APP), presenilin 1 (PS1), amyloid beta (Aß), and GSK3 are the effectors, which are significantly associated with progression of Alzheimer's Disease (AD) and its symptoms. A significant protein, acetylcholinesterase (AChE) becomes dysfunctional as a result of cholinergic neuronal loss in AD pathology. However, certain associated peptides potentiate the release of primary neuropathological hallmarks, i.e., senile plaque and neurofibrillary tangles (NFTs), by modulating the alpha 7 acetylcholinesterase receptor (α7nAChR). The AChE variants, T30 and T14 have also been found to be elevated in AD patients and mimic the toxic actions of pathological events in patients. The manuscript discusses the significance of AChE inhibitors in AD therapeutics, by indicating the disastrous role of molecular alterations and elevation of AChE, accompanied with the downstream effects instigated by the peptide, supported by clinical evidence and investigations. The cyclized variant of AChE peptide, NBP14 has been identified as a novel candidate that reverses the harmful effects of T30, T14 and Aß, mainly calcium influx, cell viability and AChE release. The review aims to grab the attention of neuro-researchers towards the significance of triggering effectors in propagating AD and role of AChE in regulating them, which can potentially ace the development of reliable therapeutic candidates, similar to NBP14, to mitigate neurodegeneration.


Subject(s)
Acetylcholinesterase , Alzheimer Disease , Humans , Acetylcholinesterase/metabolism , Acetylcholinesterase/therapeutic use , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Glycogen Synthase Kinase 3/therapeutic use , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology , Amyloid beta-Protein Precursor/metabolism
15.
Neurotox Res ; 41(1): 85-102, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36567416

ABSTRACT

Parkinson's disease is a neurodegenerative disorder which is characterised mostly by loss of dopaminergic nerve cells throughout the nigral area mainly as a consequence of oxidative stress. Muscle stiffness, disorganised bodily responses, disturbed sleep, weariness, amnesia, and voice impairment are all symptoms of dopaminergic neuron degeneration and existing symptomatic treatments are important to arrest additional neuronal death. Some cannabinoids have recently been demonstrated as robust antioxidants that might protect the nerve cells from degeneration even when cannabinoid receptors are not triggered. Cannabinoids are likely to have property to slow or presumably cease the steady deterioration of the brain's dopaminergic systems, a condition for which there is now no treatment. The use of cannabinoids in combination with currently available drugs has the potential to introduce a radically new paradigm for treatment of Parkinson's disease, making it immensely useful in the treatment of such a debilitating illness.


Subject(s)
Cannabinoids , Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Humans , Cannabinoids/therapeutic use , Parkinson Disease/drug therapy , Neuroprotective Agents/therapeutic use , Neurodegenerative Diseases/drug therapy , Dopamine , Dopaminergic Neurons
16.
Cell Signal ; 102: 110539, 2023 02.
Article in English | MEDLINE | ID: mdl-36455831

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in the world. Although the basic pathology of the disease is elucidated, it is difficult to restore or prevent the worsening of neurodegeneration and its symptoms. Antibody and small molecule-based approaches have been studied and are in study individually, but a combined approach like conjugation has not been performed to date. The conjugation between antibodies and drugs which are already used for Alzheimer's treatment or developed specifically for this purpose may have better efficacy and dual action in mitigating Alzheimer's disease. A probable mechanism for antibody-drug conjugates in Alzheimer's disease is discussed in the present review.


Subject(s)
Alzheimer Disease , Immunoconjugates , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Immunoconjugates/therapeutic use , Antibodies/therapeutic use , Amyloid beta-Peptides
17.
Nitric Oxide ; 130: 1-11, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36375788

ABSTRACT

Neurodegenerative diseases are a set of diseases in which slow and progressive neuronal loss occurs. Nitric oxide (NO) as a neurotransmitter performs key roles in the stimulation and blockade of various inflammatory processes. Although physiological NO is necessary for protection against a variety of pathogens, reactive oxygen species-mediated oxidative stress induces inflammatory cascades and apoptosis. Activation of glial cells particularly astrocytes and microglia induce overproduction of NO, resulting in neuroinflammation and neurodegenerative disorders. Hence, inhibiting the overproduction of NO is a beneficial therapeutic approach for numerous neuroinflammatory conditions. Several compounds have been explored for the management of neurodegenerative disorders, but they have minor symptomatic benefits and several adverse effects. Phytochemicals have currently gained more consideration owing to their ability to reduce the overproduction of NO in neurodegenerative disorders. Furthermore, phytochemicals are generally considered to be safe and beneficial. The mechanisms of NO generation and their implications in neurodegenerative disorders are explored in this review article, as well as several newly discovered phytochemicals that might have NO inhibitory activity. The current review could aid in the discovery of new anti-neuroinflammatory drugs that can suppress NO generation, particularly during neuroinflammatory and neurodegenerative conditions.


Subject(s)
Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/drug therapy , Nitric Oxide/pharmacology , Microglia , Neuroglia , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Inflammation/drug therapy , Inflammation/prevention & control
18.
Environ Sci Pollut Res Int ; 30(4): 9164-9183, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36454526

ABSTRACT

COVID-19 disease has been identified to cause remarkable increase of mucormycosis infection cases in India, with the majority of cases being observed in individuals recovering from COVID-19. Mucormycosis has emanated as an outcome of the recent COVID-19 pandemic outbreak as rapidly developing fatal illness which was acquired by Mucorales fungus which is a subcategory of molds known as mucormycetes. Mucormycosis is one of the serious, sporadic mycotic illnesses which is a great threat to immunocompromised COVID-19 patients and affects people of all ages, including children with COVID-19 infections. This is associated with tissue damaging property and, therefore, causes serious clinical complications and elevated death rate. The COVID-19-associated mucormycosis or "black fungus" are the terms used interchangeably. The rapid growth of tissue necrosis presenting as "rhino-orbital-cerebral, pulmonary, cutaneous, gastrointestinal, and disseminated disease" are various clinical forms of mucormycosis. The patient's prognosis and survival can be improved with proper surgeries using an endoscopic approach for local tissue protection in conjunction with course of appropriate conventional antifungal drug like Amphotericin-B and novel drugs like Rezafungin, encochleated Amphotericin B, Orolofim, and SCY-078 which have been explored in last few years. This review provides an overview of mucormycosis including its epidemiology, pathophysiology, risk factors, its clinical forms, and therapeutic approaches for disease management like antifungal therapy, surgical debridement, and iron chelators. The published patents and ongoing clinical trials related to mucormycosis have also been mentioned in this review.


Subject(s)
COVID-19 , Mucormycosis , Child , Humans , Mucormycosis/epidemiology , Mucormycosis/drug therapy , Mucormycosis/microbiology , Antifungal Agents , Pandemics , COVID-19/epidemiology , Amphotericin B/toxicity , Amphotericin B/therapeutic use
19.
Environ Sci Pollut Res Int ; 30(3): 6170-6191, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35994146

ABSTRACT

Glioblastoma multiforme, a rare traumatic brain disorder, is at the research climax for its uncontrolled growth leading to a catastrophic outcome. Throwing light on the target-based virtual screening of drugs using natural phytocompounds is a striking cornerstone in glioblastoma-based drug discovery, accelerating with leaps and bounds. This project aims to develop promising lead compounds against glioblastoma brain cancer using OliveNet™, an open-source database. In this pursuit, our rationale for selecting molecules was based on their capability to pass through the blood-brain barrier. Out of 51 derivative molecules from flavonoids and polyphenols, 17 molecules were screened out bearing the best ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties, alongside fulfilling our rationale of lead selection. Two polyphenols, 3,4,5-trimethoxybenzoic acid and 4-ethyl guaiacol, have binding affinity for the antioxidant flavonoid luteolin of -5.1 and -4.3 kcal/mol, respectively. According to docking studies, the residues ASN1960, ASN1966, ASN1960, PHE1984, TYR1896, VAL1911, and LYS1966 make both polar and nonpolar interactions with 3,4,5-trimethoxybenzoic acid and 4-ethylguanidine, respectively. LD50 values of toxicity screening using TOX Pro brought to limelight the excellent safety profile of polyphenols and flavonoids. Furthermore, studies using in silico cytotoxicity prediction and molecular modelling have decisively shown that these polyphenols are likely to be effective brain cancer inhibitors and promising future lead candidates against glioblastoma multiforme.


Subject(s)
Brain Neoplasms , Glioblastoma , Olea , Humans , Molecular Docking Simulation , Lead , Flavonoids , Polyphenols
20.
Neurotox Res ; 40(6): 1758-1773, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36564606

ABSTRACT

Alzheimer's disease causes loss of memory and deterioration of mental abilities is utmost predominant neurodegenerative disease accounting 70-80% cases of dementia. The appearance of plaques of amyloid-ß and neurofibrillary tangles in the brain post-mortems of Alzheimer's patients established them as key participants in the etiology of Alzheimer's disease. Exosomes exist as extracellular vesicles of nano-size which are present throughout the body. Exosomes are known to spread toxic hyperphosphorylated tau and amyloid-ß between the cells and are linked to the loss of neurons by inducing apoptosis. Exosomes have progressed from cell trashcans to multifunctional organelles which are involved in various functions like internalisation and transmission of macromolecules such as lipids, proteins, and nucleic acids. This review covers current findings on relationship of exosomes in biogenesis and angiogenesis of Alzheimer's disease and functions of exosomes in the etiology of AD. Furthermore, the roles of exosomes in development, diagnosis, treatment, and its importance as therapeutic targets and biomarkers for Alzheimer's disease have also been highlighted.


Subject(s)
Alzheimer Disease , Exosomes , Neurodegenerative Diseases , Humans , Alzheimer Disease/metabolism , Exosomes/metabolism , Neurodegenerative Diseases/metabolism , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/pathology , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...