Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Neuroeng Rehabil ; 21(1): 83, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802939

ABSTRACT

BACKGROUND: Gait deficits are very common after stroke and therefore an important aspect in poststroke rehabilitation. A currently little used method in gait rehabilitation after stroke is the activation of the flexor reflex (FR) by electrical stimulation of the sole of foot while walking. The aim of this study was to investigate the effect of FR stimulation on gait performance and gait parameters in participants with stroke within a single session of flexor reflex stimulation using Incedo™. METHODS: Twenty-five participants with subacute (n = 14) and chronic (n = 11) stroke were enrolled in the study. Motor functions were tested with a 10-m walk test (10mWT), a 2-min walk test (2minWT), and a gait analysis. These tests were performed with and without Incedo™ within a single session in randomized order. RESULTS: In the 10mWT, a significant difference was found between walking with Incedo™ (15.0 ± 8.5 s) versus without Incedo™ (17.0 ± 11.4 s, p = 0.01). Similarly, the 2minWT showed a significant improvement with Incedo™ use (90.0 ± 36.4 m) compared to without Incedo™ (86.3 ± 36.8 m, p = 0.03). These results indicate that while the improvements are statistically significant, they are modest and should be considered in the context of their clinical relevance. The gait parameters remained unchanged except for the step length. A subgroup analysis indicated that participants with subacute and chronic stroke responded similarly to the stimulation. There was a correlation between the degree of response to electrostimulation while walking and degree of improvement in 2minWT (r = 0.50, p = 0.01). CONCLUSIONS: This study is the first to examine FR activation effects in chronic stroke patients and suggests that stimulation effects are independent of the time since stroke. A larger controlled clinical trial is warranted that addresses issues as the necessary number of therapeutical sessions and for how long stimulation-induced improvements outlast the treatment period. TRIAL REGISTRATION: The trial was retrospectively registered in German Clinical Trials Register. CLINICAL TRIAL REGISTRATION NUMBER: DRKS00021457. Date of registration: 29 June 2020.


Subject(s)
Electric Stimulation Therapy , Gait Disorders, Neurologic , Stroke Rehabilitation , Stroke , Humans , Male , Stroke Rehabilitation/methods , Female , Middle Aged , Aged , Gait Disorders, Neurologic/etiology , Gait Disorders, Neurologic/rehabilitation , Electric Stimulation Therapy/methods , Stroke/complications , Stroke/physiopathology , Gait/physiology , Reflex/physiology , Adult
2.
NeuroRehabilitation ; 53(3): 347-354, 2023.
Article in English | MEDLINE | ID: mdl-37927280

ABSTRACT

BACKGROUND: Motor imagery (MI) can serve as a treatment for stroke rehabilitation. MI abilities can be assessed by testing mental chronometry (MC) as the degree of conformity between imagined and real performance of a task. A good MC performance is supposed to indicate good MI capacities. OBJECTIVE: To explore if MC abilities can be modified by extrinsic feedback in stroke patients. METHODS: 60 subacute stroke patients were randomized into three groups. MC was evaluated by executing a modified version of the Box and Block Test (BBT) mentally and in real before and after a training session. For Groups 1 and 2 the training consisted of repeated performance of the BBT in a mental and then a real version. The time needed to complete each task was measured. Only participants of Group 1 received feedback about how well mental and real performance matched. Group 3 executed the same number of BBTs but without MI. RESULTS: MC ability only improved in Group 1. The improvement lasted for at least 24 hours. In all groups, BBT real performance was improved post-training. CONCLUSION: External feedback was able to enhance MC capability which might be an approach for improving MI abilities.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Feedback , Imagery, Psychotherapy , Patients
3.
Front Neurol ; 12: 691214, 2021.
Article in English | MEDLINE | ID: mdl-34220693

ABSTRACT

The flexor reflex or withdrawal reflex can be elicited by electrical stimulation of the sole of the foot, which serves as a reflex to protect the stimulated limb against tissue damage and consists of flexion movements in the hip, knee, and ankle joint. Triggering this reflex might improve walking abilities in hemiparetic patients. We report the first case of a chronic stroke patient with the most severe impairment of walking. She was examined with and without flexor reflex activation by the Incedo® system. Tests included a 10-m walk and a 2-min walk at baseline, after 3 weeks of training with the Incedo® system and after a follow-up 3 weeks later. Moreover, a kinematic gait analysis was done before and after the training period. At baseline, activation of the flexor reflex induced an improved gait velocity. After the training period, the patient walked twice as fast compared with baseline. Her gait velocity without Incedo® was faster than the gait velocity with Incedo® at baseline. Examination at follow-up indicated that the improvements remained almost unchanged. The kinematic analysis showed an improved stride length and gait velocity during flexor reflex activation. Initially, the foot was elevated higher above the ground during flexor reflex activation. In conclusion, this first case report of a chronic stroke patient demonstrates that flexor reflex activation is feasible and improves gait parameters despite severe impairment of walking abilities.

4.
J Neuroeng Rehabil ; 18(1): 6, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33430912

ABSTRACT

BACKGROUND: Physical training is able to induce changes at neurophysiological and behavioral level associated with performance changes for the trained movements. The current study explores the effects of an additional intense robot-assisted upper extremity training on functional outcome and motor excitability in subacute stroke patients. METHODS: Thirty moderately to severely affected patients < 3 months after stroke received a conventional inpatient rehabilitation. Based on a case-control principle 15 patients were assigned to receive additional 45 min of robot-assisted therapy (Armeo®Spring) 5 times per week (n = 15, intervention group, IG). The Fugl-Meyer Assessment for the Upper Extremity (FMA-UE) was chosen as primary outcome parameter. Patients were tested before and after a 3-week treatment period as well as after a follow-up period of 2 weeks. Using transcranial magnetic stimulation motor evoked potentials (MEPs) and cortical silent periods were recorded from the deltoid muscle on both sides before and after the intervention period to study effects at neurophysiological level. Statistical analysis was performed with non-parametric tests. Correlation analysis was done with Spearman´s rank correlation co-efficient. RESULTS: Both groups showed a significant improvement in FMA-UE from pre to post (IG: + 10.6 points, control group (CG): + 7.3 points) and from post to follow-up (IG: + 3.9 points, CG: + 3.3 points) without a significant difference between them. However, at neurophysiological level post-intervention MEP amplitudes were significantly larger in the IG but not in the CG. The observed MEP amplitudes changes were positively correlated with FMA-UE changes and with the total amount of robot-assisted therapy. CONCLUSION: The additional robot-assisted therapy induced stronger excitability increases in the intervention group. However, this effect did not transduce to motor performance improvements at behavioral level. Trial registration The trial was registered in German Clinical Trials Register. CLINICAL TRIAL REGISTRATION NUMBER: DRKS00015083. Registration date: September 4th, 2018. https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00015083 . Registration was done retrospectively.


Subject(s)
Evoked Potentials, Motor/physiology , Exoskeleton Device , Recovery of Function , Robotics , Stroke Rehabilitation/instrumentation , Aged , Case-Control Studies , Female , Humans , Male , Middle Aged , Recovery of Function/physiology , Retrospective Studies , Stroke/physiopathology , Upper Extremity/physiopathology
5.
Article in English | MEDLINE | ID: mdl-33101692

ABSTRACT

BACKGROUND: Motor imagery training might be helpful in stroke rehabilitation. This study explored if a single session of motor imagery (MI) training induces performance changes in mental chronometry (MC), motor execution, or changes of motor excitability. METHODS: Subacute stroke patients (n = 33) participated in two training sessions. The order was randomized. One training consisted of a mental chronometry task, the other training was a hand identification task, each lasting 30 min. Before and after the training session, the Box and Block Test (BBT) was fully executed and also performed as a mental version which served as a measure of MC. A subgroup analysis based on the presence of sensory deficits was performed. Patients were allocated to three groups (no sensory deficits, moderate sensory deficits, severe sensory deficits). Motor excitability was measured by transcranial magnetic stimulation (TMS) pre and post training. Amplitudes of motor evoked potentials at rest and during pre-innervation as well as the duration of cortical silent period were measured in the affected and the non-affected hand. RESULTS: Pre-post differences of MC showed an improved MC after the MI training, whereas MC was worse after the hand identification training. Motor execution of the BBT was significantly improved after mental chronometry training but not after hand identification task training. Patients with severe sensory deficits performed significantly inferior in BBT execution and MC abilities prior to the training session compared to patients without sensory deficits or with moderate sensory deficits. However, pre-post differences of MC were similar in the 3 groups. TMS results were not different between pre and post training but showed significant differences between affected and unaffected side. CONCLUSION: Even a single training session can modulate MC abilities and BBT motor execution in a task-specific way. Severe sensory deficits are associated with poorer motor performance and poorer MC ability, but do not have a negative impact on training-associated changes of mental chronometry. Studies with longer treatment periods should explore if the observed changes can further be expanded. TRIAL REGISTRATION: DRKS, DRKS00020355, registered March 9th, 2020, retrospectively registered.

6.
J Neuroeng Rehabil ; 15(1): 72, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30068372

ABSTRACT

BACKGROUND: Motor deficits are the most common symptoms after stroke. There is some evidence that intensity and amount of exercises influence the degree of improvement of functions within the first 6 months after the injury. The purpose of this pilot study was to evaluate the feasibility and acceptance of semi-autonomous exercises with an upper extremity exoskeleton in addition to an inpatient rehabilitation program. In addition, changes of motor functions were examined. METHODS: Ten stroke patients with a severe upper extremity paresis were included. They were offered to perform a semi-autonomous training with a gravity-supported, computer-enhanced device (Armeo®Spring, Hocoma AG) six times per week for 4 weeks. Feasibility was evaluated by weekly structured interviews with patients and supervisors. Motor functions were assessed before and after the training period using the Wolf Motor Function Test (WMFT). The Wilcoxon Signed Rank Test was used for assessing pre-post differences. The Pearson correlation co-efficient was used for correlating the number of completed sessions with the change in motor function. Acceptance of the device and the level of satisfaction with the training were determined by a questionnaire based on visual analogue scales. RESULTS: Neither patients nor supervisors reported side effects. However, one patient had to be excluded from analysis because of transportation difficulties from the ward to the treatment facility. Therefore, analysis was based on nine patients. On average, 13.2 (55%) sessions were realized. WMFT results showed significant improvements of proximal arm functions. The number of sessions correlated with the degree of shoulder force improvement. Patients rated the exercises to be motivating, and enjoyable and would continue using the Armeo®Spring at home if they had the opportunity. CONCLUSION: Using an upper extremity exoskeleton for semi-autonomous training in an inpatient setting is feasible without side effects and is positively rated by the patients. It might further support the recovery of upper extremity function. TRIAL REGISTRATION: The trial was retrospectively registered. Registration number ISRCTN42633681 .


Subject(s)
Exercise Therapy/instrumentation , Exoskeleton Device , Stroke Rehabilitation/instrumentation , Adult , Aged , Exercise Therapy/methods , Female , Humans , Male , Middle Aged , Paresis/rehabilitation , Pilot Projects , Recovery of Function , Stroke Rehabilitation/methods
7.
J Neuroeng Rehabil ; 15(1): 47, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29880003

ABSTRACT

BACKGROUND: Proprioceptive function can be affected after neurological injuries such as stroke. Severe and persistent proprioceptive impairments may be associated with a poor functional recovery after stroke. To better understand their role in the recovery process, and to improve diagnostics, prognostics, and the design of therapeutic interventions, it is essential to quantify proprioceptive deficits accurately and sensitively. However, current clinical assessments lack sensitivity due to ordinal scales and suffer from poor reliability and ceiling effects. Robotic technology offers new possibilities to address some of these limitations. Nevertheless, it is important to investigate the psychometric and clinimetric properties of technology-assisted assessments. METHODS: We present an automated robot-assisted assessment of proprioception at the level of the metacarpophalangeal joint, and evaluate its reliability, validity, and clinical feasibility in a study with 23 participants with stroke and an age-matched group of 29 neurologically intact controls. The assessment uses a two-alternative forced choice paradigm and an adaptive sampling procedure to identify objectively the difference threshold of angular joint position. RESULTS: Results revealed a good reliability (ICC(2,1) = 0.73) for assessing proprioception of the impaired hand of participants with stroke. Assessments showed similar task execution characteristics (e.g., number of trials and duration per trial) between participants with stroke and controls and a short administration time of approximately 12 min. A difference in proprioceptive function could be found between participants with a right hemisphere stroke and control subjects (p<0.001). Furthermore, we observed larger proprioceptive deficits in participants with a right hemisphere stroke compared to a left hemisphere stroke (p=0.028), despite the exclusion of participants with neglect. No meaningful correlation could be established with clinical scales for different modalities of somatosensation. We hypothesize that this is due to their low resolution and ceiling effects. CONCLUSIONS: This study has demonstrated the assessment's applicability in the impaired population and promising integration into clinical routine. In conclusion, the proposed assessment has the potential to become a powerful tool to investigate proprioceptive deficits in longitudinal studies as well as to inform and adjust sensorimotor rehabilitation to the patient's deficits.


Subject(s)
Robotics/methods , Sensation Disorders/diagnosis , Stroke/complications , Adult , Aged , Feasibility Studies , Female , Hand/physiopathology , Humans , Male , Proprioception/physiology , Reproducibility of Results , Sensation Disorders/etiology , Stroke/physiopathology
8.
Restor Neurol Neurosci ; 34(6): 907-914, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27689548

ABSTRACT

BACKGROUND: Motor imagery is used for treatment of motor deficits after stroke. Clinical observations suggested that motor imagery abilities might be reduced in patients with severe sensory deficits. This study investigated the influence of somatosensory deficits on temporal (mental chronometry, MC) and spatial aspects of motor imagery abilities. METHODS: Stroke patients (n = 70; <6 months after stroke) were subdivided into 3 groups according to their somatosensory functions. Group 1 (n = 31) had no sensory deficits, group 2 (n = 27) had a mild to moderate sensory impairment and group 3 (n = 12) had severe sensory deficits. Patients and a healthy age-matched control group (n = 23) participated in a mental chronometry task (Box and Block Test, BBT) and a mental rotation task (Hand Identification Test, HIT). MC abilities were expressed as a ratio (motor execution time-motor imagery time/motor execution time). RESULTS: MC for the affected hand was significantly impaired in group 3 in comparison to stroke patients of group 1 (p = 0.006), group 2 (p = 0.005) and healthy controls (p < 0.001). For the non-affected hand MC was similar across all groups. Stroke patients had a slower BBT motor execution than healthy controls (p < 0.001), and group 1 executed the task faster than group 3 (p = 0.002). The percentage of correct responses in the HIT was similar for all groups. CONCLUSION: Severe sensory deficits impair mental chronometry abilities but have no impact on mental rotation abilities. Future studies should explore whether the presence of severe sensory deficits in stroke patients reduces the benefit from motor imagery therapy.


Subject(s)
Imagery, Psychotherapy/methods , Motor Skills/physiology , Movement/physiology , Sensation Disorders/etiology , Sensation Disorders/rehabilitation , Stroke/complications , Aged , Female , Hand Strength/physiology , Humans , Male , Middle Aged , Stroke Rehabilitation
9.
J Neural Transm (Vienna) ; 123(5): 473-80, 2016 05.
Article in English | MEDLINE | ID: mdl-26983925

ABSTRACT

Motor function and motor excitability can be modulated by changes of somatosensory input. Here, we performed a randomized single-blind trial to investigate behavioral and neurophysiological changes during temporary deafferentation of left upper arm and forearm in 31 right-handed healthy adults. Lidocaine cream was used to anesthetize the skin from wrist to shoulder, sparing the hand. As control condition, on a different day, a neutral cream was applied to the same skin area. The sequence (first Lidocaine, then placebo or vice versa) was randomized. Behavioral measures included the Grating Orientation Task, the Von Frey hair testing and the Nine-hole-peg-test. Transcranial magnetic stimulation was used to investigate short-interval intracortical inhibition, stimulus response curves, motor evoked potential amplitudes during pre-innervation and the cortical silent period (CSP). Recordings were obtained from left first dorsal interosseous muscle and from left flexor carpi radialis muscle. During deafferentation, the threshold of touch measured at the forearm was significantly worse. Other behavioral treatment-related changes were not found. The CSP showed a significant interaction between treatment and time in first dorsal interosseous muscle. CSP duration was longer during Lidocaine application and shorter during placebo exposure. We conclude that, in healthy subjects, temporary cutaneous deafferentation of upper and lower arm may have minor effects on motor inhibition, but not on sensory or motor function for the adjacent non-anesthetized hand.


Subject(s)
Evoked Potentials, Motor/drug effects , Forearm/innervation , Lidocaine/pharmacology , Motor Cortex/drug effects , Administration, Cutaneous , Adult , Anesthetics, Local/administration & dosage , Anesthetics, Local/pharmacology , Biophysical Phenomena/drug effects , Cortical Spreading Depression/drug effects , Female , Healthy Volunteers , Humans , Lidocaine/administration & dosage , Male , Middle Aged , Motor Cortex/physiology , Muscle, Skeletal , Orientation/drug effects , Sensory Thresholds/drug effects , Single-Blind Method , Transcranial Magnetic Stimulation , Young Adult
10.
J Neurol ; 261(9): 1752-62, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24952620

ABSTRACT

Fatigue is a common and frequently disabling symptom of multiple sclerosis (MS). The aim of this study was to develop the Fatigue index Kliniken Schmieder (FKS) for detecting motor fatigue in patients with MS using kinematic gait analysis. The FKS relies on the chaos theoretical term "attractor", which, if unchanged, is a necessary and sufficient indicator of a stable dynamical system. We measured the acceleration of the feet at the beginning of and shortly before stopping a treadmill walking task in 20 healthy subjects and 40 patients with multiple sclerosis. The attractor and movement variability were calculated. In the absence of muscular exhaustion a significant difference in the attractor and movement variability between the two time points demonstrates altered motor control indicating fatigue. Subjects were classified using the FKS. All healthy subjects had normal FKS and thus no fatigue. 29 patients with MS were classified into a fatigue group and 11 patients into a non-fatigue group. This classification agreed with the physician's observation and video analyses in up to 97 % of cases. The FKS did not correlate significantly with the overall and motor dimensions of the fatigue questionnaire scores in patients with MS and motor fatigue. The common concept of fatigue as overall subjective sensation of exhaustion can be affected by conditions including depression, sleep disorder and others. FKS constitutes a robust and objective measure of changes in motor performance. Therefore, the FKS allows correct identification of motor fatigue even in cases where common comorbidities mask motor fatigue.


Subject(s)
Fatigue/diagnosis , Motor Activity , Multiple Sclerosis/physiopathology , Multiple Sclerosis/psychology , Neuropsychological Tests/standards , Walking , Adult , Disability Evaluation , Fatigue/etiology , Fatigue/physiopathology , Female , Humans , Male , Middle Aged
11.
Front Neurol ; 5: 279, 2014.
Article in English | MEDLINE | ID: mdl-25566183

ABSTRACT

Fatigue is often reported in stroke patients. However, it is still unclear if fatigue in stroke patients is more prominent, more frequent or more "typical" than in patients with multiple sclerosis (MS) and if the pathophysiology differs between these two populations. The purpose of this study was to compare motor fatigue and fatigue-induced changes in kinematic gait parameters between stroke patients, MS patients, and healthy persons. Gait parameters at the beginning and end of a treadmill walking test were assessed in 10 stroke patients, 40 MS patients, and 20 healthy subjects. The recently developed Fatigue index Kliniken Schmieder (FKS) based on change of the movement's attractor and its variability was used to measure motor fatigue. Six stroke patients had a pathological FKS. The FKS (indicating the level of motor fatigue) in stroke patients was similar compared to MS patients. Stroke patients had smaller step length, step height and greater step width, circumduction with the right and left leg, and greater sway compared to the other groups at the beginning and at the end of test. A severe walking impairment in stroke patients does not necessarily cause a pathological FKS indicating motor fatigue. Moreover, the FKS can be used as a measure of motor fatigue in stroke and MS and may also be applicable to other diseases.

12.
PLoS One ; 8(8): e71824, 2013.
Article in English | MEDLINE | ID: mdl-23951252

ABSTRACT

In this paper we introduce a new method to expressly use live/corporeal data in quantifying differences of time series data with an underlying limit cycle attractor; and apply it using an example of gait data. Our intention is to identify gait pattern differences between diverse situations and classify them on group and individual subject levels. First we approximated the limit cycle attractors, from which three measures were calculated: δM amounts to the difference between two attractors (a measure for the differences of two movements), δD computes the difference between the two associated deviations of the state vector away from the attractor (a measure for the change in movement variation), and δF, a combination of the previous two, is an index of the change. As an application we quantified these measures for walking on a treadmill under three different conditions: normal walking, dual task walking, and walking with additional weights at the ankle. The new method was able to successfully differentiate between the three walking conditions. Day to day repeatability, studied with repeated trials approximately one week apart, indicated excellent reliability for δM (ICC(ave) > 0.73 with no differences across days; p > 0.05) and good reliability for δD (ICC(ave) = 0.414 to 0.610 with no differences across days; p > 0.05). Based on the ability to detect differences in varying gait conditions and the good repeatability of the measures across days, the new method is recommended as an alternative to expensive and time consuming techniques of gait classification assessment. In particular, the new method is an easy to use diagnostic tool to quantify clinical changes in neurological patients.


Subject(s)
Exercise Test/methods , Exercise Test/statistics & numerical data , Gait/physiology , Walking/physiology , Adolescent , Adult , Algorithms , Female , Humans , Male , Reproducibility of Results , Time Factors , Young Adult
13.
Neuropsychol Rehabil ; 23(2): 182-201, 2013.
Article in English | MEDLINE | ID: mdl-23153337

ABSTRACT

The objective of the study was to investigate whether cognitive fatigue in patients with multiple sclerosis (MS) is a spontaneous phenomenon or whether it can be provoked or exacerbated through cognitive effort and motor exercise. Thirty two patients with definite MS and cognitive fatigue according to the Fatigue Scale for Motor and Cognitive Functions (FSMC ≥ 22) performed attention tests (alertness, selective, and divided attention subtests from the TAP test battery for attention performance) twice during rest (baseline), and before and after treadmill training and cognitive load (a standardised battery of neuropsychological tests lasting 2.5 hours). Subjective exhaustion was assessed with a 10-point rating scale. Tonic alertness turned out to be the most sensitive test and showed significantly increased reaction times after treadmill training and after cognitive load. Patients' subjective assessment of exhaustion (10-point rating scale) and the objective test results were discrepant. In contrast, healthy control subjects (N = 20) did not show any decline of performance in the subtest alertness after cognitive or physical load. Data favour the concept that fatigue is induced by physical and mental load. Discrepancies between subjective and objective assessment offer therapeutic options. The common notion of a purely "subjective" lack of physical and/or mental energy should be reconsidered.


Subject(s)
Cognition Disorders/etiology , Fatigue/etiology , Multiple Sclerosis/complications , Multiple Sclerosis/rehabilitation , Physical Exertion/physiology , Acoustic Stimulation , Adult , Analysis of Variance , Attention/physiology , Decision Making/physiology , Depression/etiology , Exercise Test , Female , Humans , Male , Middle Aged , Neuropsychological Tests , Photic Stimulation , Psychiatric Status Rating Scales , Reaction Time/physiology , Statistics as Topic
14.
J Neuroeng Rehabil ; 8: 59, 2011 Oct 26.
Article in English | MEDLINE | ID: mdl-22029427

ABSTRACT

BACKGROUND: Fatigue is a frequent and serious symptom in patients with Multiple Sclerosis (MS). However, to date there are only few methods for the objective assessment of fatigue. The aim of this study was to develop a method for the objective assessment of motor fatigue using kinematic gait analysis based on treadmill walking and an infrared-guided system. PATIENTS AND METHODS: Fourteen patients with clinically definite MS participated in this study. Fatigue was defined according to the Fatigue Scale for Motor and Cognition (FSMC). Patients underwent a physical exertion test involving walking at their pre-determined patient-specific preferred walking speed until they reached complete exhaustion. Gait was recorded using a video camera, a three line-scanning camera system with 11 infrared sensors. Step length, width and height, maximum circumduction with the right and left leg, maximum knee flexion angle of the right and left leg, and trunk sway were measured and compared using paired t-tests (α = 0.005). In addition, variability in these parameters during one-minute intervals was examined. The fatigue index was defined as the number of significant mean and SD changes from the beginning to the end of the exertion test relative to the total number of gait kinematic parameters. RESULTS: Clearly, for some patients the mean gait parameters were more affected than the variability of their movements while other patients had smaller differences in mean gait parameters with greater increases in variability. Finally, for other patients gait changes with physical exertion manifested both in changes in mean gait parameters and in altered variability. The variability and fatigue indices correlated significantly with the motoric but not with the cognitive dimension of the FSMC score (R = -0.602 and R = -0.592, respectively; P < 0.026). CONCLUSIONS: Changes in gait patterns following a physical exertion test in patients with MS suffering from motor fatigue can be measured objectively. These changes in gait patterns can be described using the motor fatigue index and represent an objective measure to assess motor fatigue in MS patients. The results of this study have important implications for the assessments and treatment evaluations of fatigue in MS.


Subject(s)
Biomechanical Phenomena/physiology , Gait/physiology , Multiple Sclerosis/physiopathology , Muscle Fatigue/physiology , Adult , Cognition/physiology , Data Interpretation, Statistical , Exercise Test , Female , Humans , Knee/anatomy & histology , Knee/physiology , Lower Extremity/anatomy & histology , Lower Extremity/physiology , Male , Middle Aged , Multiple Sclerosis/diagnosis , Multiple Sclerosis/rehabilitation , Physical Exertion/physiology , Pilot Projects , Surveys and Questionnaires , Video Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...