Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 10(1)2018 Jan 17.
Article in English | MEDLINE | ID: mdl-30966122

ABSTRACT

Some polymers need a cross-linking agent for the controlled cross-linking process of polymers with a tendency to degradation during the radiation cross-linking process. While, on the other hand, other polymers do not need a cross-linking agent-predominantly there are cross-linking polymers. The Thermo-Plastic Elastomer (TPE) that was used belongs to this group of predominantly cross-linking polymers; however, this agent is added because of faster reaction times and smaller irradiation doses. Microindentation⁻tensile and tensile impact tests were carried out on a thermoplastic sample-with, and without, a cross-linking agent. Small changes were measured between these materials at low radiation doses, (up to 66 kGy); nevertheless, at higher doses, the influence of the cross-linking agent on the mechanical properties is significant.

2.
Polymers (Basel) ; 10(6)2018 Jun 09.
Article in English | MEDLINE | ID: mdl-30966675

ABSTRACT

This article deals with the study of the utilisation of irradiated HDPE products after their end-of-life cycle. Today, polymer waste processing is a matter of evermore intensive discussion. Common thermoplastic waste recycling-especially in the case of wastes with a defined composition-is generally well-known-and frequently used. On the contrary, processing cross-linked plastics is impossible to do in the same way as with virgin thermoplastics-mainly due to the impossibility of remelting them. The possibility of using waste in the form of grit or a powder, made from cross-linked High Density PolyEthylene (rHDPEx) products, after their end-of-life cycle, as a filler for virgin Low Density PolyEthylene (LDPE) was tested in a matrix. It was found that both the mechanical behaviour and processability of new composites with an LDPE matrix, with rHDPEx as a filler, depend-to a high degree-on the amount of the filler. The composite can be processed up to 60% of the filler content. The Polymer Mixture Fluidity dropped significantly, in line with the amount of filler, while the mechanical properties, on the other hand, predominantly grew with the increasing amount of rHDPEx.

3.
Polymers (Basel) ; 10(10)2018 Sep 22.
Article in English | MEDLINE | ID: mdl-30960982

ABSTRACT

The main advantages of Thermoplastic Polyester Elastomers (TPE-E) are their elastomer properties as well as their ability to be processed in the same way as thermoplastic polymers (e.g., injection moulding, compression moulding and extrusion). However, TPE-Es' properties, mainly their mechanical properties and thermal characteristics, are not as good as those of elastomers. Because of this TPE-Es are often modified with the aim of improving their properties and extending their range of application. Radiation cross-linking using accelerated electron beams is one of the most effective ways to change virgin polymers' properties significantly. Their electrical (that is to say permittivity and resistivity measurements), mechanical (that is, tensile and impact tensile tests), as well as surface (that is, nano-indentation) properties were measured on modified/cross-linked TPE-E specimens with and/or without a cross-linking agent at irradiation doses of 0, 33, 66, 99, 132, 165 and 198 kGy. The data acquired from these procedures show significant changes in the measured properties. The results of this study allow the possibility of determining the proper processing parameters and irradiation doses for the production of TPE-E products which leads to the enlargement of their application in practice.

4.
Polymers (Basel) ; 10(12)2018 Dec 08.
Article in English | MEDLINE | ID: mdl-30961286

ABSTRACT

This article discusses the possibilities of using radiation cross-linked high density polyethylene (HDPEx) acting as a filler in the original high density polyethylene (HDPE) matrix. The newly created composite is one of the possible answers to questions relating to the processing of radiation cross-linked thermoplastics. Radiation cross-linked networking is-nowadays, a commonly used technology that can significantly modify the properties of many types of thermoplastics. This paper describes the influence of the concentration of filler, in the form of grit or powder obtained by the grinding/milling of products/industrial waste from radiation cross-linked high density polyethylene (rHDPEx) on the mechanical and processing properties and the composite structure. It was determined that, by varying the concentration of the filler, it is possible to influence the mechanical behaviour of the composite. The mechanical properties of the new composite-measured at room temperature, are generally comparable or better than the same properties of the original thermoplastic. This creates very good assumptions for the effective and economically acceptable, processing of high density polyethylene (rHDPEx) waste. Its processability however, is limited; it can be processed by injection moulding up to 60 wt %.

SELECTION OF CITATIONS
SEARCH DETAIL
...