Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Int ; 188: 108736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759545

ABSTRACT

The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.


Subject(s)
Environmental Exposure , Environmental Pollutants , Microplastics , Plastics , Humans , Microplastics/toxicity , Microplastics/analysis , Environmental Pollutants/analysis , Plastics/toxicity , Environmental Pollution
2.
Chemosphere ; 336: 139205, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37315864

ABSTRACT

The issue of water contamination by heavy metal ions as highly persistent pollutants with harmful influence primarily on biological systems, even in trace levels, has become a great environmental concern globally. Therefore, there is a need for the use of highly sensitive techniques or preconcentration methods for the removal of heavy metal ions at trace levels. Thus, this research investigates a novel approach by examining the possibility of using pomegranate (Punica granatum) peel layered material for the simultaneous preconcentration of seven heavy metal ions; Cd(II), Co(II), Cr(III), Cu(II), Mn(II), Ni(II) and Pb(II) from aqueous solution and three river water samples. The quantification of the heavy metals was performed by the means of FAAS technique. The characterization of biomaterial was performed by SEM/EDS, FTIR analysis and pHpzc determination before and after the remediation process. The reusability study as well as the influence of interfering ions (Ca, K, Mg, Na and Zn) were evaluated. The conditions of preconcentration by the column method included the optimization of solution pH (5), flow rate (1.5 mL/min), a dose of biosorbent (200 mg), type of the eluent (1 mol/L HNO3), sample volume (100 mL) and sorbent fraction (<0.25 mm). The biosorbent capacity ranged from 4.45 to 57.70 µmol/g for the investigated heavy metals. The practical relevance of this study is further extended by novel data regarding adsorbent cost analysis (17.49 $/mol). The Punica granatum sorbent represents a highly effective and economical biosorbent for the preconcentration of heavy metal ions for possible application in industrial sectors.


Subject(s)
Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Environmental Pollutants/analysis , Metals, Heavy/analysis , Water , Indicators and Reagents/analysis , Fresh Water , Water Pollutants, Chemical/analysis , Adsorption , Hydrogen-Ion Concentration
3.
Environ Pollut ; 322: 121174, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36746289

ABSTRACT

Nickel (Ni) is a widespread environmental pollutant commonly released into effluent due to industrial activities, the use of fuels, or wastewater disposal. Many studies confirm the toxic effects of this heavy metal. However, there is a lack of knowledge and data on bioaccumulation patterns in tissues as well as cellular and molecular responses following the exposure of living organisms to Ni. In this study, Japanese quails were exposed to low (10 µg/L) and high (2000 µg/L) Ni concentrations in the form of nickel(II) chloride via drinking water. Sub-chronic exposure lasted 30 days while nominal concentrations represented average Ni content in drinking water (low dose) and average Ni levels in highly polluted aquatic environments (high dose). It was revealed that a high dose of Ni was correlated with increased water intake and decreased body weight. Overall, Ni exposure induced the development of microcytic anemia and alterations in measured blood indices. Moreover, Ni exposure impaired immunological activation as seen through the increased number of the white blood cells, increased heterophile/lymphocyte (H/L) ratio, and pronounced thrombocytosis. Ni elicited changes in the albumin, glucose, cholesterol, and triglyceride serum levels in a concentration-dependent manner. Alterations of plasma protein fractions suggested liver functional impairment while high levels of urea and creatinine indicated potential kidney injury. Granulation of heterophiles and an increase in erythroblasts in the bone marrow showed that the hematopoietic tissue was also impacted by Ni toxicity. On average each quail bioaccumulated 5.87 µg of Ni per gram of tissue. Moreover, the distribution and bioaccumulation of Ni in terms of relative concentration were as follows: feathers > kidneys > heart > liver > pectoral muscles. Assessed bioaccumulation levels and associated cellular and metabolic alterations have revealed new multilayer toxicological data that will help in the extrapolation of Ni toxicity in other vertebrates, including humans.


Subject(s)
Drinking Water , Metals, Heavy , Water Pollutants, Chemical , Humans , Animals , Nickel/toxicity , Nickel/metabolism , Quail , Bioaccumulation , Water Pollutants, Chemical/toxicity
4.
Chemosphere ; 307(Pt 1): 135737, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35850218

ABSTRACT

Various toxic heavy metals have become hazardous to human health as well as the environment. This research has been focused on a biosorption/bioremoval process of chromium (III), copper (II) and lead (II) ions from an aqueous solution by utilizing lignocellulosic biomass of Citrus limon peel (CLP) powder. CLP powder biomass was selected based on dietary fibre components having greater potential to remove target heavy metal ions in order to purify wastewater by following the eco-friendly biosorption method. At optimum conditions, the observed maximum removal efficiency of 97.47, 87.13 and 95.71% for Cr, Cu and Pb ions, respectively, was observed. An investigation has been made as a work of pH, CLP amount and temperature. The presented bio-removal processes by prepared CLP biosorbent manifested as a temperature-independent. Langmuir isotherm model was found an excellent fit of the isotherm data for tested systems with the calculated biosorption capacities of 111.11 (Cr), 76.92 (Cu) and 100 (Pb) mg/g. The positive ΔH values for selected target heavy metal ions, except lead ions, confirmed that the reaction was spontaneous and endothermic. A cooperative mechanism of second-order and intraparticle diffusion models during the adsorption processes of all three target ions was established with a higher coefficient of determination and more closely anticipated take-up (adsorption capacity). Furthermore, the interaction of -OH and -COOH functional groups of CLP that have a major role in the removal of Cr, Cu and Pb ions from single-ion aqueous solution and/or a surface biosorption was confirmed based on the results presented by SEM-EDS and FTIR analysis. Analysis from XRD revealed peak corresponding to amorphous cellulose type I as observed by FT-IR analysis.


Subject(s)
Environmental Pollutants , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Biomass , Cellulose , Chromium/analysis , Copper/analysis , Dietary Fiber , Environmental Pollutants/analysis , Humans , Hydrogen-Ion Concentration , Ions/analysis , Kinetics , Lead/analysis , Lignin , Metals, Heavy/analysis , Powders , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Wastewater/analysis , Water Pollutants, Chemical/analysis
5.
Chemosphere ; 296: 133971, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35182527

ABSTRACT

The wastewater containing Cd, Co, Fe, Cu, Cr, Mn, Ni and Pb ions are as trace metal pollutants. Water pollution caused by increment in industrialization and overpopulation reveals a major threat to human health. Adsorption is recognized as the effective and optimum method to remove water contaminations. The amorphous and porous form of silicon dioxide is silica gel widely used as an adsorbent. It can absorb moisture with traces of the target heavy metal ions. This research elaborates a simplistic, and reliable preconcentration column method highly developed for the determination of Cd2+, Fe3+, Co2+, Cr3+, Cu2+, Mn2+, Pb2+ and Ni2+ ions in model solutions and real water samples by flame atomic absorption spectrometry (FAAS). The proposed operation depends on the retention of the target ions from buffered model solutions on a silica gel filled up a column modified with vanadium(V) oxide sorbent followed by their desorption. SiO2/V2O5 is an efficient adsorbent due to its low cost, eco-friendly and high availability. The adsorbent morphological and interfacial physicochemical characterization was done using scanning electron microscopy, and Fourier transmission infrared spectroscopy, respectively. The 2.92 value achieved for the point of zero charges supports the experimentation for the heavy metal efficient adsorption. Quantitative recoveries were achieved at pH 10 with 50 mg of SiO2/V2O5 mass and adsorption capacity ranged from 28.96 µmol/g (Pb) to 214.86 µmol/g (Fe) with 1114.79 µmol/g in total. Simultaneous preconcentration effect was determined by the interference cations on the sorbent. The LOD varies from 8.42 to 50.56 µg/L and LOQ is achieved from 20.06 to 72.41 µg/L of 15 blank solutions. The developed preconcentration procedure was adequately implemented for the simultaneous analysis of eight metallic ions content in local river samples. The developed vanadium(V) oxide incorporated with silica gel is practicable as an economical and effective adsorbent to eliminate metallic ions from a liquid solution.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Cadmium/analysis , Humans , Hydrogen-Ion Concentration , Ions , Lead , Metals, Heavy/analysis , Oxides , Silica Gel , Silicon Dioxide/chemistry , Spectrophotometry, Atomic/methods , Vanadium/analysis , Water/chemistry , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...