Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 14(47): 17743-17753, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36421075

ABSTRACT

The competitive performance of optoelectronic devices based on advanced organic semiconductors increasingly calls for suitably scalable processing schemes to capitalise on their application potential. With performance benchmarks typically established by spin-coating fabrication, doctor-blade deposition represents a widely available roll-to-roll-compatible means for the preparation of large-area samples and establishing the device upscaling potential. However, the inherently slower film formation kinetics often result in unfavourable active layer microstructures, requiring empirical and material-inefficient optimisation of solutions to reach the performance of spin-coated devices. Here we present a versatile approach to achieving performance parity for spin- and blade-coated devices using in situ gas-assisted drying enabled by a modular 3D-printed attachment. This is illustrated for organic photodetectors (OPDs) featuring bulk heterojunction active layers comprising blends of P3HT and PM6 polymer donors with the nonfullerene acceptor ITIC. Compared to conventionally blade-coated devices, mild drying gas pressures of 0.5-2 bar yield up to a 10-fold enhancement of specific detectivity by maximising external quantum efficiency and suppressing dark-current. Furthermore, controlling gas flux distribution enables one-step fabrication of 1D chain conformation and 2D chain orientation patterns in, respectively, PFO and P3HT:N2200 blend films, opening the possibility for high-throughput fabrication of devices with complex structured active layers.

2.
Adv Mater ; 32(12): e1908258, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32068919

ABSTRACT

Future lightweight, flexible, and wearable electronics will employ visible-light-communication schemes to interact within indoor environments. Organic photodiodes are particularly well suited for such technologies as they enable chemically tailored optoelectronic performance and fabrication by printing techniques on thin and flexible substrates. However, previous methods have failed to address versatile functionality regarding wavelength selectivity without increasing fabrication complexity. This work introduces a general solution for printing wavelength-selective bulk-heterojunction photodetectors through engineering of the ink formulation. Nonfullerene acceptors are incorporated in a transparent polymer donor matrix to narrow and tune the response in the visible range without optical filters or light-management techniques. This approach effectively decouples the optical response from the viscoelastic ink properties, simplifying process development. A thorough morphological and spectroscopic investigation finds excellent charge-carrier dynamics enabling state-of-the-art responsivities >102 mA W-1 and cutoff frequencies >1.5 MHz. Finally, the color selectivity and high performance are demonstrated in a filterless visible-light-communication system capable of demultiplexing intermixed optical signals.

3.
ACS Appl Mater Interfaces ; 10(49): 42733-42739, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30430828

ABSTRACT

Digitally printed organic photodiodes (OPDs) are of great interest for the cost-efficient additive manufacturing of single and multidevice detection systems with full freedom of design. Recently reported high-performance non-fullerene acceptors (NFAs) can address the crucial demands of future applications in terms of high operational speed, tunable spectral response, and device stability. Here, we present the first demonstration of inkjet and aerosol-jet printed OPDs based on the high-performance NFA, IDTBR, in combination with poly(3-hexylthiophene), exhibiting a spectral response up to the near-infrared (NIR) region. These digitally printed devices reach record responsivities up to 300 mA/W in the visible and NIR spectrum, competing with current commercially available technologies based on Si. Furthermore, their fast dynamic response with cutoff frequencies surpassing 2 MHz outperforms most of the state-of-the-art OPDs. The successful process translation from spin-coating to printing is highlighted by the marginal loss in performance compared to the reference devices, which reach responsivities of 400 mA/W and detection speeds of more than 4 MHz. The achieved high device performance and the industrial relevance of the developed fabrication process provide NFAs with an enormous potential for the development of printed photodetection systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...