Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Methods Mol Biol ; 2342: 3-27, 2021.
Article in English | MEDLINE | ID: mdl-34272689

ABSTRACT

This chapter will provide a general introduction to the kinetics of enzyme-catalyzed reactions, including a general discussion of catalysts, reaction rates, and binding constants. This section will be followed by a discussion of various types of enzyme kinetics observed in drug metabolism reactions. A large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the Vmax value. However, in other cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231-242, 2004). Several cytochromes P450 (CYPs) have large active sites that enable binding of multiple molecules (Yano et al., J Biol Chem 279:38091-38094, 2004; Wester et al., J Biol Chem 279:35630-35637, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies.


Subject(s)
Enzymes/metabolism , Algorithms , Animals , Catalysis , Humans , Kinetics
2.
J Clin Pharmacol ; 55(4): 467-77, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25449227

ABSTRACT

The potential inhibition of the major human cytochrome P450 (CYP) enzymes by faldaprevir was evaluated both in vitro and in clinical studies (healthy volunteers and hepatitis C virus [HCV] genotype 1-infected patients). In vitro studies indicated that faldaprevir inhibited CYP2B6, CYP2C9, and CYP3A, and was a weak-to-moderate inactivator of CYP3A4. Faldaprevir 240 mg twice daily in healthy volunteers demonstrated moderate inhibition of hepatic and intestinal CYP3A (oral midazolam: 2.96-fold increase in AUC(0-24 h)), weak inhibition of hepatic CYP3A (intravenous midazolam: 1.56-fold increase in AUC(0-24 h)), weak inhibition of CYP2C9 ([S]-warfarin: 1.29-fold increase in AUC(0-120 h)), and had no relevant effects on CYP1A2, CYP2B6, or CYP2D6. Faldaprevir 120 mg once daily in HCV-infected patients demonstrated weak inhibition of hepatic and intestinal CYP3A (oral midazolam: 1.52-fold increase in AUC(0-∞)), and had no relevant effects on CYP2C9 or CYP1A2. In vitro drug-drug interaction predictions based on inhibitor concentration ([I])/inhibition constant (Ki) ratios tended to overestimate clinical effects and a net-effect model provided a more accurate approach. These studies suggest that faldaprevir shows a dose-dependent inhibition of CYP3A and CYP2C9, and does not induce CYP isoforms.


Subject(s)
Cytochrome P-450 Enzyme Inhibitors/pharmacology , Cytochrome P-450 Enzyme System/metabolism , Oligopeptides/pharmacology , Protease Inhibitors/pharmacology , Thiazoles/pharmacology , Adolescent , Adult , Aminoisobutyric Acids , Dose-Response Relationship, Drug , Female , Healthy Volunteers , Hepatitis C/metabolism , Humans , In Vitro Techniques , Isoenzymes/metabolism , Leucine/analogs & derivatives , Male , Microsomes, Liver/drug effects , Midazolam/pharmacokinetics , Middle Aged , Proline/analogs & derivatives , Quinolines , Warfarin/pharmacokinetics , Young Adult
3.
Methods Mol Biol ; 1113: 9-22, 2014.
Article in English | MEDLINE | ID: mdl-24523106

ABSTRACT

This chapter provides a general introduction to the kinetics of enzyme-catalyzed reactions, with a focus on drug-metabolizing enzymes. A prerequisite to understanding enzyme kinetics is having a clear grasp of the meanings of "enzyme" and "catalysis." Catalysts are reagents that can increase the rate of a chemical reaction without being consumed in the reaction. Enzymes are proteins that form a subset of catalysts. These concepts are further explored below.


Subject(s)
Enzymes/metabolism , Biocatalysis , Half-Life , Humans , Kinetics
4.
Methods Mol Biol ; 1113: 23-35, 2014.
Article in English | MEDLINE | ID: mdl-24523107

ABSTRACT

As described in Chapter 2 , a large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the V max value. In many cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231-242, 2004). Several cytochromes P450 have large active sites that enable binding of multiple molecules (Wester et al. J Biol Chem 279:35630-35637, 2004; Yano et al. J Biol Chem 279:38091-38094, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies. This chapter covers enzyme kinetic reactions in which a single enzyme has multiple binding sites for substrates and/or inhibitors as well as reactions catalyzed by multiple enzymes.


Subject(s)
Enzymes/metabolism , Models, Biological , Binding Sites , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Models, Chemical
5.
Drug Metab Dispos ; 37(7): 1355-70, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19359406

ABSTRACT

Time-dependent inhibition (TDI) of cytochrome P450 (P450) enzymes caused by new molecular entities (NMEs) is of concern because such compounds can be responsible for clinically relevant drug-drug interactions (DDI). Although the biochemistry underlying mechanism-based inactivation (MBI) of P450 enzymes has been generally understood for several years, significant advances have been made only in the past few years regarding how in vitro time-dependent inhibition data can be used to understand and predict clinical DDI. In this article, a team of scientists from 16 pharmaceutical research organizations that are member companies of the Pharmaceutical Research and Manufacturers of America offer a discussion of the phenomenon of TDI with emphasis on the laboratory methods used in its measurement. Results of an anonymous survey regarding pharmaceutical industry practices and strategies around TDI are reported. Specific topics that still possess a high degree of uncertainty are raised, such as parameter estimates needed to make predictions of DDI magnitude from in vitro inactivation parameters. A description of follow-up mechanistic experiments that can be done to characterize TDI are described. A consensus recommendation regarding common practices to address TDI is included, the salient points of which include the use of a tiered approach wherein abbreviated assays are first used to determine whether NMEs demonstrate TDI or not, followed by more thorough inactivation studies for those that do to define the parameters needed for prediction of DDI.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Drug Industry , Drug Interactions , Microsomes, Liver/metabolism , Aryl Hydrocarbon Hydroxylases/metabolism , Cytochrome P-450 CYP2B6 , Cytochrome P-450 CYP3A/metabolism , Drug Design , Glucuronosyltransferase , Humans , Microsomes, Liver/enzymology , Oxidoreductases, N-Demethylating/metabolism , Pharmaceutical Preparations/metabolism , Structure-Activity Relationship , Substrate Specificity , Time Factors
6.
Inorg Chem ; 44(11): 3875-9, 2005 May 30.
Article in English | MEDLINE | ID: mdl-15907113

ABSTRACT

The synthesis and physical-chemical characterization of the metal-ligand complex [Os(bpy)2(CO)(enIA)][OTf]2 (where enIA = ethylenediamine iodoacetamide) with a sulfhydryl-specific functional group is described. The UV and visible absorption and luminescence emission, including lifetime and steady-state anisotropy, are reported for the free probe and the probe covalently linked to two test proteins. The spectroscopic properties of the probe are unaffected by chemical modification and subsequent covalent linkage to the proteins. The luminescence lifetime in aqueous buffer is approximately 200 ns and the limiting anisotropy is greater than 0.125, suggesting a potentially useful probe for biophysical investigations.


Subject(s)
Organometallic Compounds/chemical synthesis , Osmium/chemistry , Sulfhydryl Compounds/chemistry , Cysteine/chemistry , DNA Glycosylases/chemistry , Electrochemistry , Escherichia coli/enzymology , Humans , Ligands , Luminescence , Organometallic Compounds/chemistry , Serum Albumin/chemistry
7.
Carcinogenesis ; 26(3): 605-12, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15579485

ABSTRACT

The development of effective chemopreventive agents against cigarette smoke-induced lung cancer could be greatly facilitated by the availability of suitable laboratory animal models. Here we report that male Hartley guinea pigs treated with cigarette smoke by inhalation twice a day for 28 days developed preneoplastic lung lesions, including bronchial hyperplasia, dysplasia and squamous metaplasia, analogous to those found in human smokers. The lesions were accompanied by increased expression of proliferating cell nuclear antigen and activation of the serine/threonine kinase Akt in the bronchial epithelium. In contrast, no lung lesions were found in guinea pigs ('sham smoked') that were submitted to identical procedures but without cigarettes. Compared with a diet low in vitamin C (50 p.p.m.) and vitamin E (15 p.p.m.), a diet high in vitamin C (4000 p.p.m.) and vitamin E (40 p.p.m.) significantly increased the incidence of these lesions. The inclusion of 1,4-phenylenebis(methylene)selenocyanate (p-XSC), a synthetic chemopreventive organoselenium compound, in the high vitamin C-high vitamin E diet at a level of 15 p.p.m. as selenium appeared to decrease the lesion incidence. Administration of (-)-epigallocatechin gallate, a powerful green tea polyphenolic antioxidant, at 560 p.p.m. in the drinking water had no effect. As in human smokers, levels of ascorbate in blood plasma, lung, liver and the adrenal glands were significantly decreased by cigarette smoke inhalation. These results identify a relevant in vivo laboratory model of cigarette smoke-induced lung cancer, suggest that p-XSC may have activity as a chemopreventive agent against cigarette smoke-induced lung lesions and provide additional evidence that very high dietary levels of certain antioxidants can have co-carcinogenic activity in cigarette smoke-induced lung cancer.


Subject(s)
Ascorbic Acid/administration & dosage , Diet , Lung Neoplasms/etiology , Nicotiana , Precancerous Conditions/etiology , Smoke/adverse effects , Vitamin E/administration & dosage , Animals , Ascorbic Acid/blood , Enzyme Activation , Guinea Pigs , Immunohistochemistry , Inhalation Exposure , Proliferating Cell Nuclear Antigen/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt
8.
Biophys J ; 87(6): 3799-813, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15326025

ABSTRACT

We describe herein a computationally intensive project aimed at carrying out molecular dynamics (MD) simulations including water and counterions on B-DNA oligomers containing all 136 unique tetranucleotide base sequences. This initiative was undertaken by an international collaborative effort involving nine research groups, the "Ascona B-DNA Consortium" (ABC). Calculations were carried out on the 136 cases imbedded in 39 DNA oligomers with repeating tetranucleotide sequences, capped on both ends by GC pairs and each having a total length of 15 nucleotide pairs. All MD simulations were carried out using a well-defined protocol, the AMBER suite of programs, and the parm94 force field. Phase I of the ABC project involves a total of approximately 0.6 mus of simulation for systems containing approximately 24,000 atoms. The resulting trajectories involve 600,000 coordinate sets and represent approximately 400 gigabytes of data. In this article, the research design, details of the simulation protocol, informatics issues, and the organization of the results into a web-accessible database are described. Preliminary results from 15-ns MD trajectories are presented for the d(CpG) step in its 10 unique sequence contexts, and issues of stability and convergence, the extent of quasiergodic problems, and the possibility of long-lived conformational substates are discussed.


Subject(s)
DNA/chemistry , Models, Chemical , Models, Molecular , Oligodeoxyribonucleotides/chemistry , Base Sequence , Computer Simulation , Kinetics , Molecular Sequence Data , Motion , Nucleic Acid Conformation , Structure-Activity Relationship
9.
J Mol Biol ; 330(4): 687-703, 2003 Jul 18.
Article in English | MEDLINE | ID: mdl-12850140

ABSTRACT

Guanine-uracil (G.U) wobble base-pairs are a detrimental lesion in DNA. Previous investigations have shown that such wobble base-pairs are more prone to base-opening than the normal G.C base-pairs. To investigate the sequence-dependence of base-pair opening we have performed 5ns molecular dynamics simulations on G.U wobble base-pairs in two different sequence contexts, TGT/AUA and CGC/GUG. Furthermore, we have investigated the effect of replacing the guanine base in each sequence with a fluorescent guanine analogue, 6-methylisoxanthopterin (6MI). Our results indicate that each sequence opens spontaneously towards the major groove in the course of the simulations. The TGT/AUA sequence has a greater proportion of structures in the open state than the CGC/GUG sequence. Incorporation of 6MI yields wobble base-pairs that open more readily than their guanine counterparts. In order of increasing open population, the sequences are ordered as CGC

Subject(s)
DNA Damage , DNA/chemistry , Base Pair Mismatch , Computer Simulation , Hydrogen Bonding , Kinetics , Models, Molecular , Models, Statistical , Nucleic Acid Conformation , Protein Conformation , Time Factors
10.
Biochemistry ; 41(36): 10976-84, 2002 Sep 10.
Article in English | MEDLINE | ID: mdl-12206669

ABSTRACT

Uracil DNA glycosylase (UDG) is a base excision repair enzyme that specifically recognizes and removes uracil from double- or single-stranded DNA. The efficiency of the enzyme depends on the DNA sequence surrounding the uracil. Crystal structures of UDG in complex with DNA reveal that the DNA is severely bent and distorted in the region of the uracil. This suggests that the sequence-dependent efficiency of the enzyme may be related to the energetic cost of DNA distortion in the process of specific damage recognition. To test this hypothesis, molecular dynamics simulations were performed on two sequences representing extreme cases of UDG efficiency, AUA/TAT (high efficiency) and GUG/CAC (low efficiency). Analysis of the simulations shows that the effective bending force constants are lower for the AUA/TAT sequence, indicating that this sequence is more flexible than the GUG/CAC sequence. Fluorescence lifetimes of the adenine analogue 2-aminopurine (2AP), replacing adenine opposite the uracil, are shorter in the context of the AUA/TAT sequence, indicating more dynamic base-base interaction and greater local flexibility than in the GUG/CAC sequence. Furthermore, the K(M) of Escherichia coli UDG for the AUA/TAT sequence is 10-fold smaller than that for the GUG/CAC sequence, while the k(cat) is only 2-fold smaller. This indicates that differences in UDG efficiency largely arise from differences in binding and not catalysis. These results link directly flexibility near the damaged DNA site with the efficiency of DNA repair.


Subject(s)
DNA Glycosylases , DNA/chemistry , N-Glycosyl Hydrolases/chemistry , Nucleic Acid Conformation , 2-Aminopurine/chemistry , Bacterial Proteins/chemistry , Base Sequence , Enzyme Activation , Escherichia coli/enzymology , Fluorescent Dyes/chemistry , Kinetics , Oligonucleotides/chemical synthesis , Spectrometry, Fluorescence/methods , Spectrophotometry , Thermodynamics , Uracil/chemistry , Uracil-DNA Glycosidase
SELECTION OF CITATIONS
SEARCH DETAIL
...