Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Antibodies (Basel) ; 13(1)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38247569

ABSTRACT

The COVID-19 pandemic, once a global crisis, is now largely under control, a testament to the extraordinary global efforts involving vaccination and public health measures. However, the relentless evolution of SARS-CoV-2, leading to the emergence of new variants, continues to underscore the importance of remaining vigilant and adaptable. Monoclonal antibodies (mAbs) have stood out as a powerful and immediate therapeutic response to COVID-19. Despite the success of mAbs, the evolution of SARS-CoV-2 continues to pose challenges and the available antibodies are no longer effective. New variants require the ongoing development of effective antibodies. In the present study, we describe the generation and characterization of neutralizing mAbs against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein by combining plasmid DNA and recombinant protein vaccination. By integrating genetic immunization for rapid antibody production and the potent immune stimulation enabled by protein vaccination, we produced a rich pool of antibodies, each with unique binding and neutralizing specificities, tested with the ELISA, BLI and FACS assays and the pseudovirus assay, respectively. Here, we present a panel of mAbs effective against the SARS-CoV-2 variants up to Omicron BA.1 and BA.5, with the flexibility to target emerging variants. This approach ensures the preparedness principle is in place to address SARS-CoV-2 actual and future infections.

2.
Commun Biol ; 6(1): 1051, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848611

ABSTRACT

Utilization of human ACE2 allowed several bat coronaviruses (CoVs), including the causative agent of COVID-19, to infect humans directly or via intermediate hosts. However, the determinants of species-specific differences in ACE2 usage and the frequency of the ability of animal CoVs to use human ACE2 are poorly understood. Here we applied VSV pseudoviruses to analyze the ability of Spike proteins from 26 human or animal CoVs to use ACE2 receptors across nine reservoir, potential intermediate and human hosts. We show that SARS-CoV-2 Omicron variants evolved towards more efficient ACE2 usage but mutation of R493Q in BA.4/5 and XBB Spike proteins disrupts utilization of ACE2 from Greater horseshoe bats. Variations in ACE2 residues 31, 41 and 354 govern species-specific differences in usage by coronaviral Spike proteins. Mutation of T403R allows the RaTG13 bat CoV Spike to efficiently use all ACE2 orthologs for viral entry. Sera from COVID-19 vaccinated individuals neutralize the Spike proteins of various bat Sarbecoviruses. Our results define determinants of ACE2 receptor usage of diverse CoVs and suggest that COVID-19 vaccination may protect against future zoonoses of bat coronaviruses.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Chiroptera , Disease Reservoirs , Animals , Humans , Angiotensin-Converting Enzyme 2/genetics , Chiroptera/genetics , COVID-19 Vaccines , Disease Reservoirs/virology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
3.
Front Immunol ; 14: 1231274, 2023.
Article in English | MEDLINE | ID: mdl-37753087

ABSTRACT

A multitude of alterations in the old immune system impair its functional integrity. Closely related, older individuals show, for example, a reduced responsiveness to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines. However, systematic strategies to specifically improve the efficacy of vaccines in the old are missing or limited to simple approaches like increasing the antigen concentration or injection frequencies. We here asked whether the intrinsic, trimeric structure of the SARS-CoV-2 spike (S) antigen and/or a DNA- or protein-based antigen delivery platform affects priming of functional antibody responses particularly in old mice. The used S-antigens were primarily defined by the presence/absence of the membrane-anchoring TM domain and the closely interlinked formation/non-formation of a trimeric structure of the receptor binding domain (S-RBD). Among others, we generated vectors expressing prefusion-stabilized, cell-associated (TM+) trimeric "S2-P" or secreted (TM-) monomeric "S6-PΔTM" antigens. These proteins were produced from vector-transfected HEK-293T cells under mild conditions by Strep-tag purification, revealing that cell-associated but not secreted S proteins tightly bound Hsp73 and Grp78 chaperones. We showed that both, TM-deficient S6-PΔTM and full-length S2-P antigens elicited very similar S-RBD-specific antibody titers and pseudovirus neutralization activities in young (2-3 months) mice through homologous DNA-prime/DNA-boost or protein-prime/protein-boost vaccination. The trimeric S2-P antigen induced high S-RBD-specific antibody responses in old (23-24 months) mice through DNA-prime/DNA-boost vaccination. Unexpectedly, the monomeric S6-PΔTM antigen induced very low S-RBD-specific antibody titers in old mice through homologous DNA-prime/DNA-boost or protein-prime/protein-boost vaccination. However, old mice efficiently elicited an S-RBD-specific antibody response after heterologous DNA-prime/protein-boost immunization with the S6-PΔTM antigen, and antibody titers even reached similar levels and neutralizing activities as in young mice and also cross-reacted with different S-variants of concern. The old immune system thus distinguished between trimeric and monomeric S protein conformations: it remained antigen responsive to the trimeric S2-P antigen, and a simple change in the vaccine delivery regimen was sufficient to unleash its reactivity to the monomeric S6-PΔTM antigen. This clearly shows that both the antigen structure and the delivery platform are crucial to efficiently prime humoral immune responses in old mice and might be relevant for designing "age-adapted" vaccine strategies.


Subject(s)
Blood Group Antigens , COVID-19 , Vaccines, DNA , Animals , Mice , Antibodies, Neutralizing , SARS-CoV-2 , Immunization
4.
Front Immunol ; 14: 1170759, 2023.
Article in English | MEDLINE | ID: mdl-37180152

ABSTRACT

Background: Recent data on immune evasion of new SARS-CoV-2 variants raise concerns about the efficacy of antibody-based COVID-19 therapies. Therefore, in this study the in-vitro neutralization capacity against SARS-CoV-2 variant B.1 and the Omicron subvariants BA.1, BA.2 and BA.5 of sera from convalescent individuals with and without boost by vaccination was assessed. Methods and findings: The study included 313 serum samples from 155 individuals with a history of SARS-CoV-2 infection, divided into subgroups without (n=25) and with SARS-CoV-2 vaccination (n=130). We measured anti-SARS-CoV-2 antibody concentrations by serological assays (anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S) and neutralizing titers against B.1, BA.1, BA.2 and BA.5 in a pseudovirus neutralization assay. Sera of the majority of unvaccinated convalescents did not effectively neutralize Omicron sublineages BA.1, BA.2 and BA.5 (51.7%, 24.1% and 51.7%, resp.). In contrast, 99.3% of the sera of superimmunized individuals (vaccinated convalescents) neutralized the Omicron subvariants BA.1 and BA.5 and 99.6% neutralized BA.2. Neutralizing titers against B.1, BA.1, BA.2 and BA.5 were significantly higher in vaccinated compared to unvaccinated convalescents (p<0.0001) with 52.7-, 210.7-, 141.3- and 105.4-fold higher geometric mean of 50% neutralizing titers (NT50) in vaccinated compared to unvaccinated convalescents. 91.4% of the superimmunized individuals showed neutralization of BA.1, 97.2% of BA.2 and 91.5% of BA.5 with a titer ≥ 640. The increase in neutralizing titers was already achieved by one vaccination dose. Neutralizing titers were highest in the first 3 months after the last immunization event. Concentrations of anti-S antibodies in the anti-SARS-CoV-2-QuantiVac-ELISA (IgG) and Elecsys Anti-SARS-CoV-2 S assays predicted neutralization capacity against B.1 and Omicron subvariants BA.1, BA.2 and BA.5. Conclusions: These findings confirm substantial immune evasion of the Omicron sublineages, which can be overcome by vaccination of convalescents. This informs strategies for choosing of plasma donors in COVID-19 convalescent plasma programs that shall select specifically vaccinated convalescents with very high titers of anti-S antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19 Vaccines , COVID-19/prevention & control , COVID-19 Serotherapy , Vaccination , Antibodies, Viral , Immunoglobulin G
5.
Front Pediatr ; 11: 1020865, 2023.
Article in English | MEDLINE | ID: mdl-37051428

ABSTRACT

Introduction: Durability of immune protection against reinfection with SARS-CoV-2 remains enigmatic, especially in the pediatric population and in the context of immune-evading variants of concern. Obviously, this knowledge is required for measures to contain the spread of infection and in selecting rational preventive measures. Methods: Here, we investigated the serum neutralization capacity of 36 seropositive adults and 34 children approximately one year after infection with the ancestral Wuhan strain of SARS-CoV-2 by using a pseudovirus neutralization assay. Results: We found that 88.9% of seropositive adult (32/36) and 94.1% of seropositive children (32/34) convalescents retained the neutralizing activity against the SARS-CoV-2 Wuhan strain (WT). Although, the neutralization effect against Omicron BA.1 (B.1.1.529.1) was significantly lower, 70.6% (24/34) of children and 41.7% (15/36) of adults possessed BA.1 cross-neutralizing antibodies. The spike 1 (S1)-specific T cell recall capacity using an activation-induced marker assay was analyzed in 18 adults and 16 children. All participants had detectable S1-specific CD4 T cells against WT, and 72.2% (13/18) adults and 81,3% (13/16) children had detectable S1 WT-specific CD8 T cells. CD4 cross-reactivity against BA.1 was demonstrated in all investigated adults (18/18), and 66.7% (12/18) adult participants had also detectable specific CD8 BA.1 T cells while we detected BA.1 S1 reactive CD4 and CD8 T cells in 81.3% (13/16) children. Discussion: Together, our findings demonstrate that infection with the ancestral strain of SARS-CoV-2 in children as well as in adults induces robust serological as well as T cell memory responses that persist over at least 12 months. This suggests persistent immunological memory and partial cross-reactivity against Omicron BA.1.

6.
Nat Commun ; 13(1): 7315, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36437276

ABSTRACT

The COVID-19 course and immunity differ in children and adults. We analyzed immune response dynamics in 28 families up to 12 months after mild or asymptomatic infection. Unlike adults, the initial response is plasmablast-driven in children. Four months after infection, children show an enhanced specific antibody response and lower but detectable spike 1 protein (S1)-specific B and T cell responses than their parents. While specific antibodies decline, neutralizing antibody activity and breadth increase in both groups. The frequencies of S1-specific B and T cell responses remain stable. However, in children, one year after infection, an increase in the S1-specific IgA class switch and the expression of CD27 on S1-specific B cells and T cell maturation are observed. These results, together with the enhanced neutralizing potential and breadth of the specific antibodies, suggest a progressive maturation of the S1-specific immune response. Hence, the immune response in children persists over 12 months but dynamically changes in quality, with progressive neutralizing, breadth, and memory maturation. This implies a benefit for booster vaccination in children to consolidate memory formation.


Subject(s)
COVID-19 , Adult , Child , Humans , SARS-CoV-2 , Antibody Formation , Antibodies, Neutralizing , Immunization, Secondary
7.
Front Immunol ; 13: 882918, 2022.
Article in English | MEDLINE | ID: mdl-35958601

ABSTRACT

In light of the decreasing immune protection against symptomatic SARS-CoV-2 infection after initial vaccinations and the now dominant immune-evasive Omicron variants, 'booster' vaccinations are regularly performed to restore immune responses. Many individuals have received a primary heterologous prime-boost vaccination with long intervals between vaccinations, but the resulting long-term immunity and the effects of a subsequent 'booster', particularly against Omicron BA.1, have not been defined. We followed a cohort of 23 young adults, who received a primary heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, over a 7-month period and analysed how they responded to a BNT162b2 'booster'. We show that already after the primary heterologous vaccination, neutralization titers against Omicron BA.1 are recognizable but that humoral and cellular immunity wanes over the course of half a year. Residual responsive memory T cells recognized spike epitopes of the early SARS-CoV-2 B.1 strain as well as the Delta and BA.1 variants of concern (VOCs). However, the remaining antibody titers hardly neutralized these VOCs. The 'booster' vaccination was well tolerated and elicited both high antibody titers and increased memory T cell responses against SARS-CoV-2 including BA.1. Strikingly, in this young heterologously vaccinated cohort the neutralizing activity after the 'booster' was almost as potent against BA.1 as against the early B.1 strain. Our results suggest that a 'booster' after heterologous vaccination results in effective immune maturation and potent protection against the Omicron BA.1 variant in young adults.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Vaccination , Young Adult
8.
Antiviral Res ; 203: 105343, 2022 07.
Article in English | MEDLINE | ID: mdl-35598779

ABSTRACT

Besides pandemic SARS-CoV-2, also endemic seasonal human common cold coronaviruses (hCoVs) have a significant impact on human health and economy. Studies on hCoVs and the identification of antivirals are therefore crucial to improve human well-being. However, hCoVs have long been neglected and the methodology to study virus infection, replication and inhibition warrants being updated. We here evaluated the established plaque-based assays to determine viral titers and cell-to-cell spread and developed protocols for the immunodetection of the viral nucleocapsid protein by flow cytometry and in-cell ELISA to study infection rates at early time points. The developed protocols allow detection of hCoV-229E infection after 2, and hCoV-NL63 and -OC43 infection after 3 days at a single cell level or in a 96 well microtiter format, in large sample numbers without being laborious or expensive. Both assays can be applied to assess the susceptibility of cells to hCoV infection and replication, and to determine the efficacy of antiviral compounds as well as neutralizing antibodies in a sensitive and quantitative manner. Application revealed that clinically applied SARS-CoV-2 targeting monoclonal antibodies are inactive against hCoVs, but that the viral polymerase targeting antivirals remdesivir and molnupiravir are broadly active also against all three hCoVs. Further, the in-cell ELISA provided evidence that nirmatrelvir, previously shown to broadly inhibit coronavirus proteases, also prevents replication of authentic hCoVs. Importantly, the protocols described here can be easily adapted to other coronavirus strains and species as well as viruses of other families within a short time. This will facilitate future research on known and emerging (corona)viruses, support the identification of antivirals and increase the preparedness for future virus outbreaks.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Common Cold , Coronavirus NL63, Human , Antiviral Agents/pharmacology , COVID-19/diagnosis , Common Cold/diagnosis , Common Cold/drug therapy , Humans , SARS-CoV-2 , Seasons
9.
Nat Commun ; 13(1): 128, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013206

ABSTRACT

The quality and persistence of children's humoral immune response following SARS-CoV-2 infection remains largely unknown but will be crucial to guide pediatric SARS-CoV-2 vaccination programs. Here, we examine 548 children and 717 adults within 328 households with at least one member with a previous laboratory-confirmed SARS-CoV-2 infection. We assess serological response at 3-4 months and 11-12 months after infection using a bead-based multiplex immunoassay for 23 human coronavirus antigens including SARS-CoV-2 and its Variants of Concern (VOC) and endemic human coronaviruses (HCoVs), and additionally by three commercial SARS-CoV-2 antibody assays. Neutralization against wild type SARS-CoV-2 and the Delta VOC are analysed in a pseudotyped virus assay. Children, compared to adults, are five times more likely to be asymptomatic, and have higher specific antibody levels which persist longer (96.2% versus 82.9% still seropositive 11-12 months post infection). Of note, symptomatic and asymptomatic infections induce similar humoral responses in all age groups. SARS-CoV-2 infection occurs independent of HCoV serostatus. Neutralization responses of children and adults are similar, although neutralization is reduced for both against the Delta VOC. Overall, the long-term humoral immune response to SARS-CoV-2 infection in children is of longer duration than in adults even after asymptomatic infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Antigens, Viral/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Child , Child, Preschool , Cross Reactions/immunology , Female , Humans , Infant , Male , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/immunology , Vaccination/methods
10.
Clin Infect Dis ; 75(1): e653-e661, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35079775

ABSTRACT

BACKGROUND: Most of the millions of people that are vaccinated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), have previously been infected by related circulating human coronaviruses (hCoVs) causing common colds and will experience further encounters with these viruses in the future. Whether COVID-19 vaccinations impact neutralization of seasonal coronaviruses is largely unknown. METHODS: We analyzed the capacity of sera derived from 24 individuals before and after heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination to neutralize genuine OC43, NL63, and 229E hCoVs, as well as viral pseudoparticles carrying the SARS-CoV-1, SARS-CoV-2, Middle East Respiratory Syndrome (MERS)-CoV, and hCoV-OC43, hCoV-NL63, and hCoV-229E spike proteins. Genuine hCoVs or spike containing pseudovirions were incubated with different concentrations of sera and neutralization efficiencies were determined by measuring viral RNA yields, intracellular viral nucleocapsid expression, or reporter gene expression in Huh-7 cells. RESULTS: All individuals showed strong preexisting immunity against hCoV-OC43. Neutralization of hCoV-NL63 was more variable and all sera showed only modest inhibitory activity against genuine hCoV-229E. SARS-CoV-2 vaccination resulted in efficient cross-neutralization of SARS-CoV-1 but not of MERS-CoV. On average, vaccination significantly increased the neutralizing activity against genuine hCoV-OC43, hCoV-NL63, and hCoV-229E. CONCLUSIONS: Heterologous COVID-19 vaccination may confer some cross-protection against endemic seasonal coronaviruses.


Subject(s)
COVID-19 , Coronavirus 229E, Human , Coronavirus NL63, Human , Coronavirus OC43, Human , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , SARS-CoV-2 , Seasons , Vaccination
11.
Mol Ther ; 30(1): 311-326, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34547465

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has made the development of safe and effective vaccines a critical priority. To date, four vaccines have been approved by European and American authorities for preventing COVID-19, but the development of additional vaccine platforms with improved supply and logistics profiles remains a pressing need. Here we report the preclinical evaluation of a novel COVID-19 vaccine candidate based on the electroporation of engineered, synthetic cDNA encoding a viral antigen in the skeletal muscle. We constructed a set of prototype DNA vaccines expressing various forms of the SARS-CoV-2 spike (S) protein and assessed their immunogenicity in animal models. Among them, COVID-eVax-a DNA plasmid encoding a secreted monomeric form of SARS-CoV-2 S protein receptor-binding domain (RBD)-induced the most potent anti-SARS-CoV-2 neutralizing antibody responses (including against the current most common variants of concern) and a robust T cell response. Upon challenge with SARS-CoV-2, immunized K18-hACE2 transgenic mice showed reduced weight loss, improved pulmonary function, and lower viral replication in the lungs and brain. COVID-eVax conferred significant protection to ferrets upon SARS-CoV-2 challenge. In summary, this study identifies COVID-eVax as an ideal COVID-19 vaccine candidate suitable for clinical development. Accordingly, a combined phase I-II trial has recently started.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunization/methods , Models, Animal , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Vaccines, DNA/administration & dosage , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/genetics , COVID-19/virology , Female , Ferrets , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Protein Domains , Rats, Sprague-Dawley
12.
EBioMedicine ; 75: 103761, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34929493

ABSTRACT

BACKGROUND: Heterologous COVID-19 vaccination regimens combining vector- and mRNA-based vaccines are already administered, but data on solicited adverse reactions, immunological responses and elicited protection are limited. METHODS: To evaluate the reactogenicity and humoral as well as cellular immune responses towards most prevalent SARS-CoV-2 variants after a heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, we analysed a cohort of 26 clinic employees aged 25-46 (median 30.5) years who received a ChAdOx1 nCoV-19 prime followed by a BNT162b2 boost after an 8-week interval. Serological data were compared to a cohort which received homologous BNT162b2 vaccination with a 3-week interval (14 individuals aged 25-65, median 42). FINDINGS: Self-reported solicited symptoms after ChAdOx1 nCoV-19 prime were in line with previous reports and more severe than after the BNT162b2 boost. Antibody titres increased significantly over time resulting in strong neutralization titres two weeks after the BNT162b2 boost and subsequently slightly decreased over the course of 17 weeks. At the latest time point measured, all analysed sera retained neutralizing activity against the currently dominant Delta (B.1.617.2) variant. Two weeks post boost, neutralizing activity against the Alpha (B.1.1.7) and immune-evading Beta (B.1.351) variant was ∼4-fold higher than in individuals receiving homologous BNT162b2 vaccination. No difference was observed in neutralization of Kappa (B.1.617.1). In addition, heterologous vaccination induced CD4+ and CD8+ T cells reactive to SARS-CoV-2 spike peptides of all analysed variants; Wuhan-Hu-1, Alpha, Beta, Gamma (P.1), and Delta. INTERPRETATION: In conclusion, heterologous ChAdOx1 nCoV-19 / BNT162b2 prime-boost vaccination is not associated with serious adverse events and induces potent humoral and cellular immune responses. The Alpha, Beta, Delta, and Kappa variants of spike are potently neutralized by sera from all participants and reactive T cells recognize spike peptides of all tested variants. These results suggest that this heterologous vaccination regimen is at least as immunogenic and protective as homologous vaccinations and also offers protection against current variants of concern. FUNDING: This project has received funding from the European Union's Horizon 2020 research and innovation programme, the German Research Foundation, the BMBF, the Robert Koch Institute (RKI), the Baden-Württemberg Stiftung, the county of Lower Saxony, the Ministry for Science, Research and the Arts of Baden-Württemberg, Germany, and the National Institutes of Health.


Subject(s)
Antibodies, Neutralizing/immunology , BNT162 Vaccine/administration & dosage , COVID-19/prevention & control , ChAdOx1 nCoV-19/administration & dosage , Immunity, Cellular/drug effects , Immunization, Secondary , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , BNT162 Vaccine/immunology , COVID-19/epidemiology , COVID-19/immunology , ChAdOx1 nCoV-19/immunology , Female , Humans , Male , Middle Aged , Prevalence
13.
J Immunol ; 206(11): 2614-2622, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33980583

ABSTRACT

The current SARS-CoV-2 pandemic has triggered the development of various SARS-CoV-2 neutralization tests. A wild-type virus (using African green monkey VeroE6 cells), a pseudovirus (using human Caco-2 cells), and a surrogate neutralization test platform were applied to characterize the SARS-CoV-2 neutralization potential of a cohort of 111 convalescent plasma donors over a period of seven months after diagnosis. This allowed an in-depth validation and assay performance analysis of these platforms. More importantly, we found that SARS-CoV-2 neutralization titers were stable or even increased within the observation period, which contradicts earlier studies reporting a rapid waning of Ab titers after three to four months. Moreover, we observed a positive correlation of neutralization titers with increasing age, number of symptoms reported, and the presence of the Rhesus Ag RhD. Validation of the platforms revealed that highest assay performances were obtained with the wild-type virus and the surrogate neutralization platforms. However, our data also suggested that selection of cutoff titers had a strong impact on the evaluation of neutralization potency. When taking strong neutralization potency, as demonstrated by the wild-type virus platform as the gold standard, up to 55% of plasma products had low neutralization titers. However, a significant portion of these products were overrated in their potency when using the surrogate assay with the recommended cutoff titer. In summary, our study demonstrates that SARS-CoV-2 neutralization titers are stable for at least seven months after diagnosis and offers a testing strategy for rapid selection of high-titer convalescent plasma products in a biosafety level 1 environment.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Blood Donors , COVID-19/therapy , SARS-CoV-2/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , COVID-19/immunology , Female , Humans , Immunization, Passive , Male , Rh-Hr Blood-Group System/immunology , COVID-19 Serotherapy
14.
Cell ; 184(9): 2384-2393.e12, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33794143

ABSTRACT

The global spread of SARS-CoV-2/COVID-19 is devastating health systems and economies worldwide. Recombinant or vaccine-induced neutralizing antibodies are used to combat the COVID-19 pandemic. However, the recently emerged SARS-CoV-2 variants B.1.1.7 (UK), B.1.351 (South Africa), and P.1 (Brazil) harbor mutations in the viral spike (S) protein that may alter virus-host cell interactions and confer resistance to inhibitors and antibodies. Here, using pseudoparticles, we show that entry of all variants into human cells is susceptible to blockade by the entry inhibitors soluble ACE2, Camostat, EK-1, and EK-1-C4. In contrast, entry of the B.1.351 and P.1 variant was partially (Casirivimab) or fully (Bamlanivimab) resistant to antibodies used for COVID-19 treatment. Moreover, entry of these variants was less efficiently inhibited by plasma from convalescent COVID-19 patients and sera from BNT162b2-vaccinated individuals. These results suggest that SARS-CoV-2 may escape neutralizing antibody responses, which has important implications for efforts to contain the pandemic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , SARS-CoV-2/immunology , Animals , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Cell Line , Drug Resistance, Viral , Humans , Immunization, Passive , Kinetics , Membrane Fusion , Models, Molecular , Neutralization Tests , Serine Endopeptidases/metabolism , Solubility , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Virus Internalization , COVID-19 Serotherapy
15.
Nat Commun ; 12(1): 1726, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741941

ABSTRACT

SARS-CoV-2 is a respiratory pathogen and primarily infects the airway epithelium. As our knowledge about innate immune factors of the respiratory tract against SARS-CoV-2 is limited, we generated and screened a peptide/protein library derived from bronchoalveolar lavage for inhibitors of SARS-CoV-2 spike-driven entry. Analysis of antiviral fractions revealed the presence of α1-antitrypsin (α1AT), a highly abundant circulating serine protease inhibitor. Here, we report that α1AT inhibits SARS-CoV-2 entry at physiological concentrations and suppresses viral replication in cell lines and primary cells including human airway epithelial cultures. We further demonstrate that α1AT binds and inactivates the serine protease TMPRSS2, which enzymatically primes the SARS-CoV-2 spike protein for membrane fusion. Thus, the acute phase protein α1AT is an inhibitor of TMPRSS2 and SARS-CoV-2 entry, and may play an important role in the innate immune defense against the novel coronavirus. Our findings suggest that repurposing of α1AT-containing drugs has prospects for the therapy of COVID-19.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/pharmacology , alpha 1-Antitrypsin/pharmacology , Antibodies, Viral/blood , Antiviral Agents/pharmacology , COVID-19/blood , Caco-2 Cells , Humans , Immunoglobulin G/blood , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...