Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 126: 257-270, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28757050

ABSTRACT

6-[(1S)-1-[1-[5-(2-hydroxyethoxy)-2-pyridyl]pyrazol-3-yl]ethyl]-3H-1,3-benzothiazol-2-one (LY3130481 or CERC-611) is a selective antagonist of AMPA receptors containing transmembrane AMPA receptor regulatory protein (TARP) γ-8. This molecule has been characterized as a potent and efficacious anticonvulsant in an array of acute and chronic epilepsy models in rodents. The present set of experiments was designed to assess the effects of LY3130481 on the electroencephelogram (EEG), cognitive function, and neurochemical outflow. LY3130481 disrupted food-maintained responding in rats and spontaneous alternation in a Y-maze in mice. In rat fear conditioning, LY3130481 caused a deficit in trace (hippocampal-dependent), but not in delay fear conditioning. Although these effects on cognitive performances were observed, the known cognitive-impairing anticonvulsant, topiramate, did not always produce deficits under these assay conditions. LY3130481 produced modest increases in wake times in rats. In addition, LY3130481 was able to attenuate some impairing effects of standard antiepileptic drugs. The motor-impairing effects of the lacosamide were attenuated by LY3130481 as was the decrease in non-rapid-eye movement sleep induced by carbamazepine. Evaluation of the effect of LY3130481 on neurotransmitter and metabolite efflux in the rat medial prefrontal cortex, using in vivo microdialysis, revealed significant increases in the pro-cognitive and wake-promoting neurotransmitters, histamine and acetylcholine, as well as in serotonin, telemethylhistamine, 5-HIAA, HVA and MHPG. LY3130481 thus presents a novel behavioral profile that will have to be evaluated in patients to fully appreciate its implications for therapeutics. LY3130481 is currently under clinical development as CERC-611 as an antiepileptic.


Subject(s)
Anticonvulsants/administration & dosage , Benzothiazoles/administration & dosage , Calcium Channels/physiology , Cognition/drug effects , Prefrontal Cortex/drug effects , Pyrazoles/administration & dosage , Acetylcholine/metabolism , Animals , Behavior, Animal/drug effects , Conditioning, Classical/drug effects , Electroencephalography , Fear/drug effects , Fructose/administration & dosage , Fructose/analogs & derivatives , Histamine/metabolism , Male , Maze Learning/drug effects , Nitriles , Prefrontal Cortex/metabolism , Prefrontal Cortex/physiology , Pyridones/administration & dosage , Rats, Sprague-Dawley , Rats, Wistar , Serotonin/metabolism , Sleep Stages/drug effects , Topiramate
2.
J Pharmacol Exp Ther ; 336(1): 165-77, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20947638

ABSTRACT

The normalization of excessive glutamatergic neurotransmission through the activation of metabotropic glutamate 2 (mGlu2) receptors may have therapeutic potential in a variety of psychiatric disorders, including anxiety/depression and schizophrenia. Here, we characterize the pharmacological properties of N-(4-((2-(trifluoromethyl)-3-hydroxy-4-(isobutyryl)phenoxy)methyl)benzyl)-1-methyl-1H-imidazole-4-carboxamide (THIIC), a structurally novel, potent, and selective allosteric potentiator of human and rat mGlu2 receptors (EC(50) = 23 and 13 nM, respectively). THIIC produced anxiolytic-like efficacy in the rat stress-induced hyperthermia assay and the mouse stress-induced elevation of cerebellar cGMP and marble-burying assays. THIIC also produced robust activity in three assays that detect antidepressant-like activity, including the mouse forced-swim test, the rat differential reinforcement of low rate 72-s assay, and the rat dominant-submissive test, with a maximal response similar to that of imipramine. Effects of THIIC in the forced-swim test and marble burying were deleted in mGlu2 receptor null mice. Analysis of sleep electroencephalogram (EEG) showed that THIIC had a sleep-promoting profile with increased non-rapid eye movement (REM) and decreased REM sleep. THIIC also decreased the dark phase increase in extracellular histamine in the medial prefrontal cortex and decreased levels of the histamine metabolite tele-methylhistamine (t-MeHA) in rat cerebrospinal fluid. Collectively, these results indicate that the novel mGlu2-positive allosteric modulator THIIC has robust activity in models used to predict anxiolytic/antidepressant efficacy, substantiating, at least with this molecule, differentiation in the biological impact of mGlu2 potentiation versus mGlu2/3 orthosteric agonism. In addition, we provide evidence that sleep EEG and CSF t-MeHA might function as viable biomarker approaches to facilitate the translational development of THIIC and other mGlu2 potentiators.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Benzyl Compounds/pharmacology , Central Nervous System/drug effects , Central Nervous System/metabolism , Excitatory Amino Acid Agonists/pharmacology , Imidazoles/pharmacology , Receptors, Metabotropic Glutamate/agonists , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Cell Line , Central Nervous System/chemistry , Cerebellum/chemistry , Cerebellum/drug effects , Cerebellum/metabolism , Drug Synergism , Humans , Male , Mice , Mice, Knockout , Rats , Rats, Inbred F344 , Rats, Sprague-Dawley , Rats, Wistar , Receptors, Metabotropic Glutamate/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...