Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotheranostics ; 8(1): 1-11, 2024.
Article in English | MEDLINE | ID: mdl-38164505

ABSTRACT

In vitro metastatic models are foreseen to introduce a breakthrough in the field of preclinical screening of more functional small-molecule pharmaceuticals and biologics. To achieve this goal, the complexity of current in vitro systems requests an appropriate upgrade to approach the three-dimensional (3D) in vivo metastatic disease. Here, we explored the potential of our 3D ß-tricalcium phosphate (ß-TCP) model of neuroblastoma bone metastasis for drug toxicity assessment. Tailor-made scaffolds with interconnected channels were produced by combining 3D printing and slip casting method. The organization of neuroblastoma cells into a mesenchymal stromal cell (MSC) network, cultured under bioactive conditions provided by ß-TCP, was monitored by two-photon microscopy. Deposition of extracellular matrix protein Collagen I by MSCs and persistent growth of tumor cells confirmed the cell-supportive performance of our 3D model. When different neuroblastoma cells were treated with conventional chemotherapeutics, the ß-TCP model provided the necessary reproducibility and accuracy of experimental readouts. Drug efficacy evaluation was done for 3D and 2D cell cultures, highlighting the need for a higher dose of chemotherapeutics under 3D conditions to achieve the expected cytotoxicity in tumor cells. Our results confirm the importance of 3D geometry in driving native connectivity between nonmalignant and tumor cells and sustain ß-TCP scaffolds as a reliable and affordable drug screening platform for use in the early stages of drug discovery.


Subject(s)
Neuroblastoma , Tissue Scaffolds , Humans , Osteogenesis , Reproducibility of Results , Neuroblastoma/drug therapy , Neuroblastoma/pathology
2.
Biomater Sci ; 9(5): 1716-1727, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33428699

ABSTRACT

Metastasis is a complex and multifactorial process highly dependent on the interaction between disseminated tumor cells and the pre-metastatic niche. The metastatic sites detected in the bone of patients affected by neuroblastoma (NB), a malignancy of the developing sympathetic nervous system, are particularly aggressive. To improve our current knowledge of metastatic tumor cell biology and improve treatment success, appropriate in vitro and in vivo models that more closely resemble the native metastatic niche are needed. In this study, the impact of the geometry of synthetic ß-tricalcium-phosphate (ß-TCP) structures on the interaction of NB tumor cells with the stromal component has been examined. The tumor microenvironment is dynamically shaped by the stroma, which sustains the growth of NB cells inside the metastatic niche. The 3D growth conditions are a determining factor for the cell proliferation rate in ß-TCP. With respect to planar counterparts, channeled 3D ß-TCP structures stimulate more interleukin-6 and Fibronectin production and define Connexin 43 distribution inside the cells. Together, these results highlight how the biomechanical properties of the 3D microenvironment enable tumor cells to form spheroid-shaped arrangements. This, in turn, facilitates their pro-migratory and pro-invasive patterns and mimics the in vivo situation by translating realistic mechanobiological cues to the metastatic NB.


Subject(s)
Cues , Neuroblastoma , Cell Line, Tumor , Humans , Printing, Three-Dimensional , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...