Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 14(9)2022 08 23.
Article in English | MEDLINE | ID: mdl-36146650

ABSTRACT

The Pennsylvania Department of Health Bureau of Laboratories (PABOL) tested 6855 animal samples for rabies using both the direct fluorescent antibody test (DFA) and LN34 pan-lyssavirus reverse transcriptase quantitative PCR (RT-qPCR) during 2017-2019. Only two samples (0.03%) were initially DFA negative but positive by LN34 RT-qPCR. Both cases were confirmed positive upon re-testing at PABOL and confirmatory testing at the Centers for Disease Control and Prevention by LN34 RT-qPCR and DFA. Rabies virus sequences from one sample were distinct from all positive samples processed at PABOL within two weeks, ruling out cross-contamination. Levels of rabies virus antigen and RNA were low in all brain structures tested, but were higher in brain stem and rostral spinal cord than in cerebellum, hippocampus or cortex. Taken together, the low level of rabies virus combined with higher abundance in more caudal brain structures suggest early infection. These cases highlight the increased sensitivity and ease of interpretation of LN34 RT-qPCR for low positive cases.


Subject(s)
Lyssavirus , Rabies virus , Rabies , Animals , Lyssavirus/genetics , Pennsylvania , RNA, Viral/genetics , RNA-Directed DNA Polymerase/genetics , Rabies/diagnosis , Rabies/veterinary , Rabies virus/genetics , Reverse Transcriptase Polymerase Chain Reaction
2.
PLoS One ; 13(5): e0197074, 2018.
Article in English | MEDLINE | ID: mdl-29768505

ABSTRACT

Rabies is a fatal zoonotic disease that requires fast, accurate diagnosis to prevent disease in an exposed individual. The current gold standard for post-mortem diagnosis of human and animal rabies is the direct fluorescent antibody (DFA) test. While the DFA test has proven sensitive and reliable, it requires high quality antibody conjugates, a skilled technician, a fluorescence microscope and diagnostic specimen of sufficient quality. The LN34 pan-lyssavirus real-time RT-PCR assay represents a strong candidate for rabies post-mortem diagnostics due to its ability to detect RNA across the diverse Lyssavirus genus, its high sensitivity, its potential for use with deteriorated tissues, and its simple, easy to implement design. Here, we present data from a multi-site evaluation of the LN34 assay in 14 laboratories. A total of 2,978 samples (1,049 DFA positive) from Africa, the Americas, Asia, Europe, and the Middle East were tested. The LN34 assay exhibited low variability in repeatability and reproducibility studies and was capable of detecting viral RNA in fresh, frozen, archived, deteriorated and formalin-fixed brain tissue. The LN34 assay displayed high diagnostic specificity (99.68%) and sensitivity (99.90%) when compared to the DFA test, and no DFA positive samples were negative by the LN34 assay. The LN34 assay produced definitive findings for 80 samples that were inconclusive or untestable by DFA; 29 were positive. Five samples were inconclusive by the LN34 assay, and only one sample was inconclusive by both tests. Furthermore, use of the LN34 assay led to the identification of one false negative and 11 false positive DFA results. Together, these results demonstrate the reliability and robustness of the LN34 assay and support a role for the LN34 assay in improving rabies diagnostics and surveillance.


Subject(s)
Lyssavirus/genetics , RNA, Viral/genetics , Rabies , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , Animals , Diagnosis , Humans , Rabies/diagnosis , Rabies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...