Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(40): 46001-46009, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36166617

ABSTRACT

Ceramic Li7La3Zr2O12 (LLZO) represents a promising candidate electrolyte for next-generation all-solid-state lithium-metal batteries. However, lithium-metal batteries are prone to dendrite formation upon fast charging. Porous/dense and porous/dense/porous LLZO structures were proposed as a solution to avoid or at least delay the formation of lithium-metal dendrites by increasing the electrode/electrolyte contact area and thus lowering the local current density at the interface. In this work, we show the feasibility of producing porous/dense/porous LLZO by a new and scalable method. The method consists of LLZO chemical deep protonation in a protic or acidic solvent, followed by thermal deprotonation at high temperatures to create the porous structure by water and lithium oxide elimination. We demonstrate that the produced structure extends the lifetime of Li/LLZO/Li symmetric cells by a factor of 8 compared to a flat LLZO at a current density of 0.1 mA/cm2 and with a capacity of 1 mAh/cm2 per half-cycle. We also show clear improvement of the Li/LLZO/LiFePO4 full cell performance with a thermally deprotonated LLZO.

2.
Small ; 18(14): e2107357, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35182015

ABSTRACT

Lithium-ion batteries based on single-crystal LiNi1- x - y Cox Mny O2 (NCM, 1-x-y ≥ 0.6) cathode materials are gaining increasing attention due to their improved structural stability resulting in superior cycle life compared to batteries based on polycrystalline NCM. However, an in-depth understanding of the less pronounced degradation mechanism of single-crystal NCM is still lacking. Here, a detailed postmortem study is presented, comparing pouch cells with single-crystal versus polycrystalline LiNi0.60 Co0.20 Mn0.20 O2 (NCM622) cathodes after 1375 dis-/charge cycles against graphite anodes. The thickness of the cation-disordered layer forming in the near-surface region of the cathode particles does not differ significantly between single-crystal and polycrystalline particles, while cracking is pronounced for polycrystalline particles, but practically absent for single-crystal particles. Transition metal dissolution as quantified by time-of-flight mass spectrometry on the surface of the cycled graphite anode is much reduced for single-crystal NCM622. Similarly, CO2 gas evolution during the first two cycles as quantified by electrochemical mass spectrometry is much reduced for single-crystal NCM622. Benefitting from these advantages, graphite/single-crystal NMC622 pouch cells are demonstrated with a cathode areal capacity of 6 mAh cm-2 with an excellent capacity retention of 83% after 3000 cycles to 4.2 V, emphasizing the potential of single-crystalline NCM622 as cathode material for next-generation lithium-ion batteries.

3.
Nat Commun ; 12(1): 5320, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34493735

ABSTRACT

High nickel content in LiNixCoyMnzO2 (NCM, x ≥ 0.8, x + y + z = 1) layered cathode material allows high specific energy density in lithium-ion batteries (LIBs). However, Ni-rich NCM cathodes suffer from performance degradation, mechanical and structural instability upon prolonged cell cycling. Although the use of single-crystal Ni-rich NCM can mitigate these drawbacks, the ion-diffusion in large single-crystal particles hamper its rate capability. Herein, we report a strategy to construct an in situ Li1.4Y0.4Ti1.6(PO4)3 (LYTP) ion/electron conductive network which interconnects single-crystal LiNi0.88Co0.09Mn0.03O2 (SC-NCM88) particles. The LYTP network facilitates the lithium-ion transport between SC-NCM88 particles, mitigates mechanical instability and prevents detrimental crystalline phase transformation. When used in combination with a Li metal anode, the LYTP-containing SC-NCM88-based cathode enables a coin cell capacity of 130 mAh g-1 after 500 cycles at 5 C rate in the 2.75-4.4 V range at 25 °C. Tests in Li-ion pouch cell configuration (i.e., graphite used as negative electrode active material) demonstrate capacity retention of 85% after 1000 cycles at 0.5 C in the 2.75-4.4 V range at 25 °C for the LYTP-containing SC-NCM88-based positive electrode.

4.
Nanoscale ; 8(29): 14004-14, 2016 Aug 07.
Article in English | MEDLINE | ID: mdl-27140292

ABSTRACT

The SEI-formation on graphitic electrodes operated as an Li(+)-ion battery anode in a standard 1 M LiPF6 EC/DMC (1 : 1) electrolyte has been studied in situ by EC-STM. Two different modes of in situ study were applied, one, which allowed to follow topographic and crystallographic changes (solvent cointercalation, graphite exfoliation, SEI precipitation on the HOPG basal plane) of the graphite electrode during SEI-formation, and the second, which gave an insight into the SEI precipitation on the HOPG basal plane in real time. From the in situ EC-STM studies, not only conclusions about the SEI-topography could be drawn, but also about the formation mechanism and the chemical composition, which strongly depend on the electrode potential. It was shown that above 1.0 V vs. Li/Li(+) the SEI-formation is still reversible, since the molecular structure of the solvent molecules remains intact during an initial reduction step. During further reduction, the molecular structures of the solvents are destructed, which causes the irreversible charge loss. The STM studies were completed by electrochemical methods, like cyclic voltammetry, the potentiostatic intermittent titration technique and charge/discharge tests of MCMB electrodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...