Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Plant Cell Environ ; 38(1): 23-34, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24725255

ABSTRACT

Maize seedlings emit sesquiterpenes during the day in response to insect herbivory. Parasitoids and predators use induced volatile blends to find their hosts or prey. To investigate the diurnal regulation of biosynthesis and emission of induced sesquiterpenes, we applied linolenoyl-L-glutamine (LG) to maize seedlings in the morning or evening using a cut-stem assay and tracked farnesene emission, in planta accumulation, as well as transcript levels of farnesyl pyrophosphate synthase 3 (ZmFPPS3) and terpene synthase10 (ZmTPS10) throughout the following day. Independent of time of day of LG treatment, maximum transcript levels of ZmFPPS3 and ZmTPS10 occurred within 3-4 h after elicitor application. The similarity between the patterns of farnesene emission and in planta accumulation in light-exposed seedlings in both time courses suggested unobstructed emission in the light. After evening induction, farnesene biosynthesis increased dramatically during early morning hours. Contrary to light-exposed seedlings dark-kept seedlings retained the majority of the synthesized farnesene. Two treatments to reduce stomatal aperture, dark exposure at midday, and abscisic acid treatment before daybreak, resulted in significantly reduced amounts of emitted and significantly increased amounts of in planta accumulating farnesene. Our results suggest that stomata not only play an important role in gas exchange for primary metabolism but also for indirect plant defences.


Subject(s)
Glutamine/pharmacology , Insecta/physiology , Sesquiterpenes/metabolism , Zea mays/metabolism , Animals , Herbivory , Plant Transpiration , Seedlings/metabolism , Zea mays/chemistry
2.
Sci Rep ; 4: 4155, 2014 Feb 24.
Article in English | MEDLINE | ID: mdl-24561664

ABSTRACT

The dynamics of association between pathogens and vectors can strongly influence epidemiology. It has been proposed that wilt disease epidemics in cucurbit populations are sustained by persistent colonization of beetle vectors (Acalymma vittatum) by the bacterial phytopathogen Erwinia tracheiphila. We developed a qPCR method to quantify E. tracheiphila in whole beetles and frass and used it to assess pathogen acquisition and retention following variable exposure to infected plants. We found that (i) E. tracheiphila is present in frass in as little as three hours after feeding on infected plants and can be transmitted with no incubation period by vectors given brief exposure to infected plants, but also by persistently colonized vectors several weeks following exposure; (ii) duration of exposure influences rates of long-term colonization; (iii) frass infectivity (assessed via inoculation experiments) reflects bacterial levels in frass samples across time; and (iv) vectors rarely clear E. tracheiphila infections, but suffer no apparent loss of fitness. These results describe a pattern conducive to the effective maintenance of E. tracheiphila within cucurbit populations.


Subject(s)
Arthropod Vectors/microbiology , Coleoptera/microbiology , Plant Diseases/microbiology , Animals , Cucurbita/microbiology , Cucurbita/parasitology , Erwinia/genetics , Erwinia/isolation & purification , Erwinia/physiology , Host-Pathogen Interactions , Plant Leaves/microbiology , Plant Leaves/parasitology , RNA, Ribosomal, 18S/metabolism
3.
Environ Entomol ; 39(1): 140-8, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20146850

ABSTRACT

Cucumber beetles, Acalymma vittatum (F.) and Diabrotica undecipunctata howardi (Barber), are specialist herbivores of cucurbits and the vector of Erwinia tracheiphila (E.F. Smith) Holland, the causative agent of wilt disease. Cucumber beetles transmit E. tracheiphila when infected frass falls onto leaf wounds at the site of beetle feeding. We show that E. tracheiphila also can be transmitted via the floral nectaries of Cucurbita pepo ssp. texana L. Andres (Texas gourd). Under field conditions, we found that beetles aggregate in flowers in the late morning, that these beetles chew the anther filaments that cover the nectaries in male flowers thereby exposing the nectary, and that beetle frass accumulates on the nectary. We use real-time polymerase chain reaction to show that most of the flowers produced during the late summer possess beetle frass containing E. tracheiphila. Greenhouse experiments, in which cultures of E. tracheiphila are deposited onto floral nectaries, show that Texas gourds can contract wilt disease through the floral nectaries. Finally, we use green fluorescent protein-transformed E. tracheiphila to document the movement of E. tracheiphila through the nectary into the xylem of the pedicel before the abscission of the flower. Together, these data show that E. tracheiphila can be transmitted through infected frass that falls on or near the floral nectaries. We hypothesize that the concentration of frass from many beetles in the flowers increases both exposure to and the concentration of E. tracheiphila and plays a major role in the dynamics of wilt disease in both wild populations and cultivated squash fields.


Subject(s)
Coleoptera , Cucurbita/microbiology , Erwinia/physiology , Flowers/microbiology , Host-Pathogen Interactions , Animals , Cucurbita/parasitology , Feeding Behavior , Flowers/parasitology , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...