Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem A ; 128(30): 6229-6239, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39031501

ABSTRACT

Recently we investigated from first-principles screening properties in systems where small molecules, characterized by a finite electronic dipole moment, are encapsulated in different nanocages. The most relevant result was the observation of an antiscreening effect in alkali-halide nanocages characterized by ionic bonds: in fact, due to the relative displacement of positive and negative ions, induced by the dipole moment of the encapsulated molecule, these cages act as dipole-field amplifiers, different from what is observed in carbon fullerene nanocages, which exhibit instead a pronounced screening effect. Here we extend the study to another class of nanostructures: the nanotubes. Using first-principles techniques based on density functional theory, we studied the properties of endohedral nanotubes obtained by encapsulation of a water molecule or a linear HF molecule. A detailed analysis of the effective dipole moment of the complexes and of the electronic charge distribution suggests that screening effects crucially depend not only on the nature of the intramolecular bonds but also on the size and the shape of the nanotubes and on the specific encapsulated molecule. As observed in endohedral nanocages, screening is maximum in covalent-bond carbon nanotubes, while it is reduced in partially ionic nanotubes, and an antiscreening effect is observed in some ionic nanotubes. However, in this case, the scenario is more complex than in corresponding ionic nanocages. In fact the specific geometric structure of alkali-halide nanotubes turns out to be crucial for determining the screening/antiscreening behavior: while nanotubes with octagonal transversal section can exhibit an antiscreening effect, which quantitatively depends on the number of layers in the longitudinal direction, instead nanotubes with dodecagonal section are always characterized by a reduction of the total dipole moment so that a screening behavior is observed. Our results show that, even in nanotube structures, in principle one can tune the dipole moment and generate electrostatic fields at the nanoscale without the aid of external potentials.

2.
Sci Rep ; 14(1): 6473, 2024 03 18.
Article in English | MEDLINE | ID: mdl-38499731

ABSTRACT

Antioxidant peptides (AOPs) are highly valued in food and pharmaceutical industries due to their significant role in human function. This study introduces a novel approach to identifying robust AOPs using a deep generative model based on sequence representation. Through filtration with a deep-learning classification model and subsequent clustering via the Butina cluster algorithm, twelve peptides (GP1-GP12) with potential antioxidant capacity were predicted. Density functional theory (DFT) calculations guided the selection of six peptides for synthesis and biological experiments. Molecular orbital representations revealed that the HOMO for these peptides is primarily localized on the indole segment, underscoring its pivotal role in antioxidant activity. All six synthesized peptides exhibited antioxidant activity in the DPPH assay, while the hydroxyl radical test showed suboptimal results. A hemolysis assay confirmed the non-hemolytic nature of the generated peptides. Additionally, an in silico investigation explored the potential inhibitory interaction between the peptides and the Keap1 protein. Analysis revealed that ligands GP3, GP4, and GP12 induced significant structural changes in proteins, affecting their stability and flexibility. These findings highlight the capability of machine learning approaches in generating novel antioxidant peptides.


Subject(s)
Antioxidants , NF-E2-Related Factor 2 , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Kelch-Like ECH-Associated Protein 1 , Peptides/pharmacology , Peptides/chemistry , Machine Learning
3.
ACS Appl Mater Interfaces ; 16(7): 8717-8732, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38326933

ABSTRACT

Urea electrolysis is a promising energy-efficient hydrogen production process with environmental benefits, but the lack of efficient and sustainable ampere-level current density electrocatalysts fabricated through simple methods is a major challenge for commercialization. Herein, we present an efficient and stable heterostructure electrocatalyst for full urea and water electrolysis in a convenient and time-efficient preparation manner. Overall, superhydrophilic/superaerophobic CoMn/CuNiP/NF exhibits exceptional performance for the hydrogen evolution reaction (HER) (-33.8, -184.4, and -234.8 mV at -10, -500, and -1000 mA cm-2, respectively), urea electro-oxidation reaction (UOR) [1.28, 1.43, and 1.51 V (vs RHE) at 10, 500, and 1000 mA cm-2, respectively], and oxygen evolution reaction (OER) [1.45, 1.67, and 1.74 V (vs RHE) at 10, 500, and 1000 mA cm-2, respectively]. Moreover, the superaerophobic CoMn/CuNiP/NF demonstrates promising potential in full urea (1.33, 1.57, and 1.60 V at 10, 500, and 1000 mA cm-2, respectively) and water (1.46 V, 1.78, and 1.86 at 10, 500, and 1000 mA cm-2, respectively) electrolysis. Based on X-ray photoelectron spectroscopy results, it was determined that the surface of the CoMn/CuNiP electrode was rich in redox pairs such as Ni2+/Ni3+, Cu+/Cu2+, Co2+/Co3+, and Mn2+/Mn3+, which are crucial for the formation of active sites for the OER and UOR, such as NiOOH, MnOOH, and CoOOH, thereby enhancing the catalytic activity. Besides, the in situ assembled CoMn/CuNiP/NF displayed highly stable performance for HER, OER, and UOR with high Faradaic efficiency for over 500 h. This research offers a simple and efficient method for manufacturing a high-efficiency and stable trifunctional electrocatalyst capable of delivering ampere-level current density in urea-assisted hydrogen production. Our density functional theory calculations reveal the potential of CoMn/CuNiP as an effective catalyst, enhancing the electronic properties and catalytic performance. The near-zero Gibbs free-energy change for HER underscores its promise, while reduced CO2 desorption energies and charge redistribution support efficient UOR. These findings signify CoMn/CuNiP's potential for electrochemical applications.

4.
Environ Sci Pollut Res Int ; 30(10): 26417-26434, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36367650

ABSTRACT

In this contribution, CoW/X materials (X = CNT or CNF) were utilized as oxidative desulfurization (ODS) catalysts for the removal of dibenzothiophene (DBT) from a model fuel (n-decane), incorporating the H2O2 as an efficient oxidant. Different operating conditions were investigated. Both compounds revealed high desulfurization efficiency using milder operating conditions leading to low levels of the DBT compound since only 1 h while using a low ratio of H2O2/S = 6. Among synthesized compounds, the CoW (15)/CNT showed superior DBT conversion through the ODS process. In other words, the highest sulfur removal efficiency of 100% for a feed sulfur content of 500 ppm was determined in a 40-min duration under optimum conditions. This was satisfyingly more effective than a recently reported CoW (20)/rGO catalyst. The characterization of synthesized catalysts was performed in order to evaluate their physicochemical properties. Moreover, product identification of the oxidation desulfurization process was performed using the GC-Mass, FTIR, and NMR techniques where it was found that this process was that of a single product. These experimental studies were complemented with density functional theory (DFT) investigations, which indeed shed important light on understanding the adsorption mechanisms as well as electronic properties of the system undertaken.


Subject(s)
Hydrogen Peroxide , Tungsten , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Sulfur/chemistry
5.
ACS Appl Mater Interfaces ; 14(45): 51275-51290, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36321761

ABSTRACT

Herein, layer-by-layer MXene/graphene oxide nanosheets wrapped with 3-aminopropyltriethoxy silane (abbreviated as F-GO@MXene) are proposed as an anti-corrosion promoter for waterborne epoxies. The GO@MXene nanohybrid is synthesized by a solvothermal reaction to produce a multi-layered 2D structure without defects. Then, the GO@MXene is modified by silane wrapping under a reflux reaction, in order to achieve chemical stability and to create active sites on the nanohybrid surface for reaction with the polymer matrix of the coating. The organic coating modified with 0.1 wt % F-GO@MXene has revealed superior corrosion protection efficiency than the organic coatings modified with either F-GO or F-MXene nanosheets. The impedance modulus at low frequency for the pure epoxy, epoxy/F-MXene, epoxy/F-GO, and epoxy/F-GO@MXene coatings is 4.17 × 105, 5.5 × 108, 4.46 × 108, and 1.14 × 1010 Ω·cm2 after 30 days of immersion in the corrosive media, respectively. The remarkable anti-corrosion property is assigned to the intense effect of the nanohybrid on the barrier performance, surface roughness, and adhesion strength of the epoxy coating. The complemental analysis based on first-principles density functional theory reveals that the adhesion strength related to the silane functional groups in its complexes follows the order F-GO@MXene > F-MXene > F-GO. The enhanced stabilization predicted on the GO@MXene nanohybrid ultimately stems from the combined role of the electrostatic and van der Waals forces, suggesting an increase in the penetration path of the corrosive media.

6.
J Mol Model ; 20(11): 2488, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25337685

ABSTRACT

In this work ab initio calculations at MP2 level in conjugation with aug-cc-pVXZ (X=D and T) basis set were performed in order to examine complexes formed between SO4 and each of linear molecules of CO2, CS2, and SCO. The results have been discussed on real minima located on singlet potential energy surface (PES). Single-point energy calculations at the MP2/aug-cc-pVTZ level uphold results obtained at the MP2/aug-cc-pVDZ level. The atom in molecules theory (AIM) was utilized to analyze the nature of intermolecular interactions. Also, natural bond orbital (NBO) analysis has been used in order to get charge transfer quota in complexes. The results show that the atmospheric role of SO4-CS2 system is more important than those followed by SO4-SCO and SO4-CO2, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL