Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Plants (Basel) ; 10(4)2021 Apr 11.
Article in English | MEDLINE | ID: mdl-33920494

ABSTRACT

The use of growth regulators such as gibberellic acid (GA3) and biostimulants, including diluted bee honey (Db-H) can improve drought tolerance in many crops, including the faba bean (Vicia faba L.). Db-H contains high values of osmoprotectants, mineral nutrients, vitamins, and many antioxidants making it an effective growth regulator against environmental stress effects. Therefore, the present study was planned to investigate the potential improvement in the faba bean plant performance (growth and productivity) under full watering (100% of crop evapotranspiration (ETc)) and drought stress (60% of ETc) by foliar application of GA3 (20 mg L-1) or Db-H (20 g L-1). The ameliorative impacts of these growth regulators on growth, productivity, physio-biochemical attributes, nutrient status, antioxidant defense system, and phytohormones were evaluated. GA3 or Db-H attenuated the negative influences of drought stress on cell membrane stability, ion leakage, relative water content, nutrient status, leaf pigments related to photosynthesis (chlorophylls and carotenoids), and efficiency of the photosystem II (PSII in terms of Fv/Fm and performance index), thus improving faba bean growth, green pod yield, and water use efficiency. Drought stress caused an abnormal state of nutrients and photosynthetic machinery due to increased indicators of oxidative stress (malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide (O2•-)), associated with increased osmoprotectants (proline, glycine betaine, soluble sugars, and soluble protein), non-enzymatic antioxidants (ascorbic acid, glutathione, and α-tocopherol), and enzymatic antioxidant activities (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase). However, foliar-applied GA3 or Db-H mediated further increases in osmoprotectants, antioxidant capacity, GA3, indole-3-acetic acid, and cytokinins, along with decreased levels of MDA and abscisic acid. These results suggest the use of GA3 or Db-H at the tested concentrations to mitigate drought-induced damage in bean plants to obtain satisfactory growth and productivity under a water deficit of up to 40%.

2.
Environ Sci Pollut Res Int ; 26(22): 22338-22350, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31154641

ABSTRACT

A pot experiment was performed to assess the useful effects of seed soaking or seedling foliar spray using 0.25 mM spermine (Spm), 0.50 mM spermidine (Spd), or 1 mM putrescine (Put) on heavy metal tolerance in wheat plants irrigated with water contaminated by cadmium (2 mM Cd2+ in CdCl2) or lead (2 mM Pb2+ in PbCl2). Cd2+ or Pb2+ presence in the growth medium resulted in significant reductions in growth and yield characteristics and activities of leaf peroxidase (POD), glutathione reductase (GR), ascorbic acid oxidase (AAO), and polyphenol oxidase (PPO) of wheat plants. In contrast, significant increases were observed for Cd2+ content in roots, leaves and grains, superoxide dismutase (SOD) and catalase (CAT) activities, radical scavenging activity (DPPH), reducing power capacity, and fragmentation in DNA in comparison to controls (without Cd2+ or Pb2+ addition). However, treating the Cd2+- or Pb2+-stressed wheat plants with Spm, Spd, or Put, either by seed soaking or foliar spray, significantly improved growth and yield characteristics and activities of POD, GR, AAO, PPO, SOD, and CAT, DPPH, and reducing power capacity in wheat plants. In contrast, Cd2+ levels in roots, leaves, and yielded grains, and fragmentation in DNA were significantly reduced compared with the stressed (with Cd2+ or Pb2+) controls. Generally, seed soaking treatments were more effective than foliar spray treatments. More specifically, seed priming in Put was the best treatment under heavy metal stress. Results of this study recommend using polyamines, especially Put, as seed soaking to relieve the adverse effects of heavy metals in wheat plants.


Subject(s)
Antioxidants/pharmacology , Inactivation, Metabolic/drug effects , Oxidoreductases/metabolism , Seedlings/drug effects , Spermidine/pharmacology , Spermine/pharmacology , Superoxide Dismutase/metabolism , Antioxidants/chemistry , Ascorbic Acid/pharmacology , Cadmium/chemistry , DNA , Genomics , Glutathione Reductase/metabolism , Oxidation-Reduction , Peroxidases/metabolism , Plant Leaves/metabolism , Polyamines , Seeds/metabolism , Spermidine/chemistry , Triticum/growth & development
3.
Curr Protein Pept Sci ; 16(5): 395-405, 2015.
Article in English | MEDLINE | ID: mdl-25824387

ABSTRACT

As signal molecules produced within the plant, phytohormones (plant hormones) control plant growth and development through the regulation of gene expression. They play also a crucial role in the regulation of cellular activities including elongation, cell division and differentiation, organogenesis, pattern formation, reproduction and responses to abiotic and biotic stress conditions. Cytokinins, auxins, gibberellins, abscisic acid and ethylene are five classic phytohormones that had been discovered by the middle of the twentieth century, while strigolactones, brassinosteroids, jasmonates and salicylates are of more recently characterized phytohormones. Interaction between different phytohormone pathways is essential in coordinating tissue outgrowth in response to environmental changes. In the past decades, hormone research has focused on elucidating signal transduction pathways from hormone perception to response. Such efforts have been well paid off by recent discoveries of almost all receptors for major classes of phytohormones. While receptors and pathways for individual hormones are being illustrated, growing evidence suggests that these signaling pathways are interconnected in a complex network. In these pathways, phytohormones not only coordinate fundamental developmental cues, but also convey environmental inputs by means of synergistic or antagonistic actions referred to as signaling crosstalk. Focusing on hormone action and crosstalk, this work suggested concentrating on phytohormones signaling, particularly cytokinin crosstalk with other hormones, in various plants. Plant responses to biotic and abiotic stresses are also elucidated regarding the dramatic recent progress in understanding the cytokinin-other phytohormones crosstalk.


Subject(s)
Cytokinins/metabolism , Plant Growth Regulators/metabolism , Plants/metabolism , Signal Transduction , Plant Physiological Phenomena , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL