Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Front Neurol ; 15: 1354092, 2024.
Article in English | MEDLINE | ID: mdl-39055321

ABSTRACT

Introduction: Alzheimer's disease and related disorders (ADRD) progressively impair cognitive function, prompting the need for early detection to mitigate its impact. Mild Cognitive Impairment (MCI) may signal an early cognitive decline due to ADRD. Thus, developing an accessible, non-invasive method for detecting MCI is vital for initiating early interventions to prevent severe cognitive deterioration. Methods: This study explores the utility of analyzing gait patterns, a fundamental aspect of human motor behavior, on straight and oval paths for diagnosing MCI. Using a Kinect v.2 camera, we recorded the movements of 25 body joints from 25 individuals with MCI and 30 healthy older adults (HC). Signal processing, descriptive statistical analysis, and machine learning techniques were employed to analyze the skeletal gait data in both walking conditions. Results and discussion: The study demonstrated that both straight and oval walking patterns provide valuable insights for MCI detection, with a notable increase in identifiable gait features in the more complex oval walking test. The Random Forest model excelled among various algorithms, achieving an 85.50% accuracy and an 83.9% F-score in detecting MCI during oval walking tests. This research introduces a cost-effective, Kinect-based method that integrates gait analysis-a key behavioral pattern-with machine learning, offering a practical tool for MCI screening in both clinical and home environments.

2.
J Alzheimers Dis Rep ; 8(1): 423-435, 2024.
Article in English | MEDLINE | ID: mdl-38549633

ABSTRACT

Background: Mild cognitive impairment (MCI) can be an early sign of Alzheimer's disease and other types of dementia detectable through gait analysis. Curve walking, which demands greater cognitive and motor skills, may be more sensitive in MCI detection than straight walking. However, few studies have compared gait performance in older adults with and without MCI in these conditions. Objective: To compare the capability of curve and straight walking tests for the detection of MCI among older adults. Methods: We employed a Kinect v.2 camera to record the gait of 55 older adults (30 healthy controls, 25 with MCI) during single-task straight and curve walking tests. We examined 50 gait markers and conducted statistical analyses to compare groups and conditions. The trail was approved with protocol No. IR.SEMUMS.REC.1398.237 by the ethics committee of Semnan University of Medical Sciences in Iran. Results: Older adults with MCI exhibited more compromised gait performance, particularly during curve walking. Curve walking outperformed straight walking in MCI detection, with several gait markers showing significant differences between healthy controls and MCI patients. These markers encompass average velocity, cadence, temporal markers (e.g., gait cycle subphase durations), spatial markers (e.g., foot position changes during gait subphases), and spatiotemporal markers (e.g., step and stride velocities). Conclusions: Our study suggests curve walking as a more informative and challenging test for MCI detection among older adults, facilitating early diagnosis using non-invasive, cost-effective tools like the Kinect v.2 camera, complementing cognitive assessments in early diagnosis, and tracking MCI progression to dementia.

3.
Article in English | MEDLINE | ID: mdl-35675251

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disease affecting cognitive and functional abilities. However, many patients presume lower cognitive or functional abilities because of aging and do not undergo clinical assessments until the symptoms become too advanced. Developing a low-cost and easy-to-use AD detection tool, which can be used in any clinical or non-clinical setting, can enable widespread AD assessments and diagnosis. This paper investigated the feasibility of developing such a tool to detect AD vs. healthy control (HC) from a simple balance and walking assessment called the Timed Up and Go (TUG) test. We collected joint position data of 47 HC and 38 AD subjects as they performed TUG in front of a Kinect V.2 camera. Our signal processing and statistical analyses provided a comprehensive analysis of balance and gait with 12 significant features for discriminating AD from HC after adjusting for age and the Geriatric Depression Scale. Using these features and a support vector machine classifier, our model classified the two groups with an average accuracy of 97.75% and an F-score of 97.67% for five-fold cross-validation and 98.68% and 98.67% for leave-one-subject out cross-validation. These results demonstrate the potential of our approach as a new quantitative complementary tool for detecting AD among older adults. Our work is novel as it presents the first application of Kinect V.2 camera and machine learning to provide a comprehensive and quantitative analysis of the TUG test to detect AD patients from HC. This study supports the feasibility of developing a low-cost and convenient AD assessment tool that can be used during routine checkups or even at home; however, future investigations could confirm its clinical diagnostic value in a larger cohort.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Aged , Alzheimer Disease/diagnosis , Humans , Machine Learning , Postural Balance , Time and Motion Studies
SELECTION OF CITATIONS
SEARCH DETAIL