Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37686294

ABSTRACT

NG2 glia receive synaptic input from neurons, but the functional impact of this glial innervation is not well understood. In the developing cerebellum and somatosensory cortex the GABAergic input might regulate NG2 glia differentiation and myelination, and a switch from synaptic to extrasynaptic neuron-glia signaling was reported in the latter region. Myelination in the hippocampus is sparse, and most NG2 glia retain their phenotype throughout adulthood, raising the question of the properties and function of neuron-NG2 glia synapses in that brain region. Here, we compared spontaneous and evoked GABAA receptor-mediated currents of NG2 glia in juvenile and adult hippocampi of mice of either sex and assessed the mode of interneuron-glial signaling changes during development. With patch-clamp and pharmacological analyses, we found a decrease in innervation of hippocampal NG2 glia between postnatal days 10 and 60. At the adult stage, enhanced activation of extrasynaptic receptors occurred, indicating a spillover of GABA. This switch from synaptic to extrasynaptic receptor activation was accompanied by downregulation of γ2 and upregulation of the α5 subunit. Molecular analyses and high-resolution expansion microscopy revealed mechanisms of glial GABAA receptor trafficking and clustering. We found that gephyrin and radixin are organized in separate clusters along glial processes. Surprisingly, the developmental loss of γ2 and postsynaptic receptors were not accompanied by altered glial expression of scaffolding proteins, auxiliary receptor subunits or postsynaptic interaction proteins. The GABAergic input to NG2 glia might contribute to the release of neurotrophic factors from these cells and influence neuronal synaptic plasticity.


Subject(s)
Receptors, GABA-A , Animals , Mice , gamma-Aminobutyric Acid , Hippocampus , Interneurons , Neuroglia
2.
Glia ; 71(6): 1481-1501, 2023 06.
Article in English | MEDLINE | ID: mdl-36802096

ABSTRACT

NG2 glia represents a distinct type of macroglial cells in the CNS and is unique among glia because they receive synaptic input from neurons. They are abundantly present in white and gray matter. While the majority of white matter NG2 glia differentiates into oligodendrocytes, the physiological impact of gray matter NG2 glia and their synaptic input are still ill defined. Here, we asked whether dysfunctional NG2 glia affect neuronal signaling and behavior. We generated mice with inducible deletion of the K+ channel Kir4.1 in NG2 glia and performed comparative electrophysiological, immunohistochemical, molecular and behavioral analyses. Kir4.1 was deleted at postnatal day 23-26 (recombination efficiency about 75%) and mice were investigated 3-8 weeks later. Notably, these mice with dysfunctional NG2 glia demonstrated improved spatial memory as revealed by testing new object location recognition while working and social memory remained unaffected. Focussing on the hippocampus, we found that loss of Kir4.1 potentiated synaptic depolarizations of NG2 glia and stimulated the expression of myelin basic protein while proliferation and differentiation of hippocampal NG2 glia remained largely unaffected. Mice with targeted deletion of the K+ channel in NG2 glia showed impaired long-term potentiation at CA3-CA1 synapses, which could be fully rescued by extracellular application of a TrkB receptor agonist. Our data demonstrate that proper NG2 glia function is important for normal brain function and behavior.


Subject(s)
Neuroglia , Proteoglycans , Mice , Animals , Proteoglycans/metabolism , Neuroglia/metabolism , Neurons/metabolism , Oligodendroglia/metabolism , Neuronal Plasticity , Antigens/metabolism
3.
Glia ; 71(2): 168-186, 2023 02.
Article in English | MEDLINE | ID: mdl-36373840

ABSTRACT

Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.


Subject(s)
Epilepsy, Temporal Lobe , Status Epilepticus , Mice , Animals , Humans , Epilepsy, Temporal Lobe/pathology , Astrocytes/pathology , Tumor Necrosis Factor-alpha , Microglia/pathology , Hippocampus/pathology , Seizures/pathology , Status Epilepticus/pathology , Kainic Acid/toxicity , Disease Models, Animal , Mice, Knockout
4.
Sci Rep ; 11(1): 24334, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34934080

ABSTRACT

The neurovascular unit (NVU) consists of cells intrinsic to the vessel wall, the endothelial cells and pericytes, and astrocyte endfeet that surround the vessel but are separated from it by basement membrane. Endothelial cells are primarily responsible for creating and maintaining blood-brain-barrier (BBB) tightness, but astrocytes contribute to the barrier through paracrine signaling to the endothelial cells and by forming the glia limitans. Gap junctions (GJs) between astrocyte endfeet are composed of connexin 43 (Cx43) and Cx30, which form plaques between cells. GJ plaques formed of Cx43 do not diffuse laterally in the plasma membrane and thus potentially provide stable organizational features to the endfoot domain, whereas GJ plaques formed of other connexins and of Cx43 lacking a large portion of its cytoplasmic carboxyl terminus are quite mobile. In order to examine the organizational features that immobile GJs impose on the endfoot, we have used super-resolution confocal microscopy to map number and sizes of GJ plaques and aquaporin (AQP)-4 channel clusters in the perivascular endfeet of mice in which astrocyte GJs (Cx30, Cx43) were deleted or the carboxyl terminus of Cx43 was truncated. To determine if BBB integrity was compromised in these transgenic mice, we conducted perfusion studies under elevated hydrostatic pressure using horseradish peroxide as a molecular probe enabling detection of micro-hemorrhages in brain sections. These studies revealed that microhemorrhages were more numerous in mice lacking Cx43 or its carboxyl terminus. In perivascular domains of cerebral vessels, we found that density of Cx43 GJs was higher in the truncation mutant, while GJ size was smaller. Density of perivascular particles formed by AQP4 and its extended isoform AQP4ex was inversely related to the presence of full length Cx43, whereas the ratio of sizes of the particles of the AQP4ex isoform to total AQP4 was directly related to the presence of full length Cx43. Confocal analysis showed that Cx43 and Cx30 were substantially colocalized in astrocyte domains near vasculature of truncation mutant mice. These results showing altered distribution of some astrocyte nexus components (AQP4 and Cx30) in Cx43 null mice and in a truncation mutant, together with leakier cerebral vasculature, support the hypothesis that localization and mobility of gap junction proteins and their binding partners influences organization of astrocyte endfeet which in turn impacts BBB integrity of the NVU.


Subject(s)
Aquaporin 4/metabolism , Astrocytes/metabolism , Blood-Brain Barrier/metabolism , Cell Membrane Permeability , Connexin 43/physiology , Connexins/metabolism , Endothelium, Vascular/metabolism , Animals , Aquaporin 4/chemistry , Aquaporin 4/genetics , Connexins/chemistry , Connexins/genetics , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Gap Junction alpha-5 Protein
5.
Front Cell Neurosci ; 15: 669717, 2021.
Article in English | MEDLINE | ID: mdl-34177466

ABSTRACT

Synaptic and axonal glutamatergic signaling to NG2 glia in white matter is critical for the cells' differentiation and activity dependent myelination. However, in gray matter the impact of neuron-to-NG2 glia signaling is still elusive, because most of these cells keep their non-myelinating phenotype throughout live. Early in postnatal development, hippocampal NG2 glia express AMPA receptors with a significant Ca2+ permeability allowing for plasticity of the neuron-glia synapses, but whether this property changes by adulthood is not known. Moreover, it is unclear whether NG2 glia express auxiliary transmembrane AMPA receptor related proteins (TARPs), which modify AMPA receptor properties, including their Ca2+ permeability. Through combined molecular and functional analyses, here we show that hippocampal NG2 glia abundantly express TARPs γ4, γ7, and γ8 as well as cornichon (CNIH)-2. TARP γ8 undergoes profound downregulation during development. Receptors of adult NG2 glia showed an increased sensitivity to blockers of Ca2+ permeable AMPA receptors, but this increase mainly concerned receptors located close to the soma. Evoked synaptic currents of NG2 glia were also sensitive to blockers of Ca2+ permeable AMPA receptors. The presence of AMPA receptors with varying Ca2+ permeability during postnatal maturation may be important for the cells' ability to sense and respond to local glutamatergic activity and for regulating process motility, differentiation, and proliferation.

6.
Epilepsia ; 62(7): 1569-1583, 2021 07.
Article in English | MEDLINE | ID: mdl-33955001

ABSTRACT

OBJECTIVE: Growing evidence suggests that dysfunctional astrocytes are crucial players in the development of mesial temporal lobe epilepsy (MTLE). Using a mouse model closely recapitulating key alterations of chronic human MTLE with hippocampal sclerosis, here we asked whether death of astrocytes contributes to the initiation of the disease and investigated potential underlying molecular mechanisms. METHODS: Antibody staining was combined with confocal imaging and semiquantitative real-time polymerase chain reaction analysis to identify markers of different cellular death mechanisms between 4 h and 3 days after epilepsy induction. RESULTS: Four hours after kainate-mediated induction of status epilepticus (SE), we found a significant reduction in the density of astrocytes in the CA1 stratum radiatum (SR) of the ipsilateral hippocampus. This reduction was transient, as within the next 3 days, astrocyte cell numbers recovered to the initial values, which was accompanied by enhanced proliferation. Four hours after SE induction, a small proportion of astrocytes in the ipsilateral CA1 SR expressed autophagy-related genes and proteins, whereas we did not find astrocytes positive for cleaved caspase 3 or terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick-end labeling, ruling out apoptosis-related astrocytic death. Importantly, at the same early time point post-SE, many astrocytes in the ipsilateral CA1 SR showed strong expression of genes encoding pro-necroptosis factors, including receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Phosphorylation of MLKL (pMLKL), formation of necrosome complexes composed of RIPK3 and pMLKL, and translocation of pMLKL to the nucleus and to the plasma membrane were often observed in astrocytes of the ipsilateral hippocampus 4 h post-SE. SIGNIFICANCE: The present study revealed that astrocytes die shortly after induction of SE. Our expression data and immunohistochemistry suggest that necroptosis and autophagy contribute to astrocytic death. These findings help to better understand how dysfunctional and pathological remodeling of astrocytes contributes to the initiation of temporal lobe epilepsy.


Subject(s)
Astrocytes/pathology , CA1 Region, Hippocampal/pathology , Cell Death , Epilepsy/pathology , Animals , Autophagy/genetics , Caspase 3/genetics , Cell Count , Cell Proliferation , Convulsants , Epilepsy/chemically induced , Kainic Acid , Male , Mice , Microglia/pathology , Protein Kinases/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Status Epilepticus/chemically induced , Status Epilepticus/pathology
7.
Cell Rep ; 34(3): 108642, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33472059

ABSTRACT

Thalamic astrocytes and oligodendrocytes are coupled via gap junctions and form panglial networks. Here, we show that these networks have a key role in energy supply of neurons. Filling an astrocyte or an oligodendrocyte in acute slices with glucose or lactate is sufficient to rescue the decline of stimulation-induced field post-synaptic potential (fPSP) amplitudes during extracellular glucose deprivation (EGD). In mice lacking oligodendroglial coupling, loading an astrocyte with glucose does not rescue the EGD-mediated loss of fPSPs. Monocarboxylate and glucose transporters are required for rescuing synaptic activity during EGD. In mice deficient in astrocyte coupling, filling of an oligodendrocyte with glucose does not rescue fPSPs during EGD. Our results demonstrate that, in the thalamus, astrocytes and oligodendrocytes are jointly engaged in delivering energy substrates for sustaining neuronal activity and suggest that oligodendrocytes exert their effect mainly by assisting astrocytes in metabolite transfer to the postsynapse.


Subject(s)
Astrocytes/metabolism , Oligodendroglia/metabolism , Thalamus/physiology , Animals , Chromosome Pairing , Mice
8.
Cells ; 9(11)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143391

ABSTRACT

The authors wish to make the following changes to their paper [...].

9.
Glia ; 68(10): 2136-2147, 2020 10.
Article in English | MEDLINE | ID: mdl-32240558

ABSTRACT

The astroglial gap junctional network formed by connexin (Cx) channels plays a central role in regulating neuronal activity and network synchronization. However, its involvement in the development and progression of epilepsy is not yet understood. Loss of interastrocytic gap junction (GJ) coupling has been observed in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy (MTLE) and in mouse models of MTLE, leading to the suggestion that it plays a causative role in the pathogenesis. To further elucidate this clinically relevant question, we investigated consequences of astrocyte disconnection on the time course and severity of kainate-induced MTLE with hippocampal sclerosis (HS) by comparing mice deficient for astrocytic Cx proteins with wild-type mice (WT). Continuous telemetric EEG recordings and video monitoring performed over a period of 4 weeks after epilepsy induction revealed substantially higher seizure and interictal spike activity during the chronic phase in Cx deficient versus WT mice, while the severity of status epilepticus was not different. Immunohistochemical analysis showed that, despite the elevated chronic seizure activity, astrocyte disconnection did not aggravate the severity of HS. Indeed, the extent of CA1 pyramidal cell loss was similar between the experimental groups, while astrogliosis, granule cell dispersion, angiogenesis, and microglia activation were even reduced in Cx deficient as compared to WT mice. Interestingly, seizure-induced neurogenesis in the adult dentate gyrus was also independent of astrocytic Cxs. Together, our data indicate that constitutive loss of GJ coupling between astrocytes promotes neuronal hyperexcitability and attenuates seizure-induced histopathological outcomes.


Subject(s)
Astrocytes/metabolism , Connexins/deficiency , Epilepsy/chemically induced , Epilepsy/metabolism , Gene Deletion , Kainic Acid/toxicity , Animals , Astrocytes/drug effects , Connexins/genetics , Epilepsy/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
10.
Nat Commun ; 10(1): 3238, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324763

ABSTRACT

Leucine-rich repeat (LRR) domains are evolutionarily conserved in proteins that function in development and immunity. Here we report strict exonic modularity of LRR domains of several human gene families, which is a precondition for alternative splicing (AS). We provide evidence for AS of LRR domain within several Nod-like receptors, most prominently the inflammasome sensor NLRP3. Human NLRP3, but not mouse NLRP3, is expressed as two major isoforms, the full-length variant and a variant lacking exon 5. Moreover, NLRP3 AS is stochastically regulated, with NLRP3 ∆ exon 5 lacking the interaction surface for NEK7 and hence loss of activity. Our data thus reveals unexpected regulatory roles of AS through differential utilization of LRRs modules in vertebrate innate immunity.


Subject(s)
Alternative Splicing , Exons/genetics , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Amino Acid Sequence , Animals , Cells, Cultured , HEK293 Cells , Humans , Immunity, Innate/genetics , Inflammasomes/chemistry , Inflammasomes/metabolism , Macrophages/metabolism , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Domains , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Stochastic Processes , Swine
11.
Cells ; 9(1)2019 Dec 31.
Article in English | MEDLINE | ID: mdl-31906100

ABSTRACT

In the neonate forebrain, network formation is driven by the spontaneous synchronized activity of pyramidal cells and interneurons, consisting of bursts of electrical activity and intracellular Ca2+ oscillations. By employing ratiometric Na+ imaging in tissue slices obtained from animals at postnatal day 2-4 (P2-4), we found that 20% of pyramidal neurons and 44% of astrocytes in neonatal mouse hippocampus also exhibit transient fluctuations in intracellular Na+. These occurred at very low frequencies (~2/h), were exceptionally long (~8 min), and strongly declined after the first postnatal week. Similar Na+ fluctuations were also observed in the neonate neocortex. In the hippocampus, Na+ elevations in both cell types were diminished when blocking action potential generation with tetrodotoxin. Neuronal Na+ fluctuations were significantly reduced by bicuculline, suggesting the involvement of GABAA-receptors in their generation. Astrocytic signals, by contrast, were neither blocked by inhibition of receptors and/or transporters for different transmitters including GABA and glutamate, nor of various Na+-dependent transporters or Na+-permeable channels. In summary, our results demonstrate for the first time that neonatal astrocytes and neurons display spontaneous ultraslow Na+ fluctuations. While neuronal Na+ signals apparently largely rely on suprathreshold GABAergic excitation, astrocytic Na+ signals, albeit being dependent on neuronal action potentials, appear to have a separate trigger and mechanism, the source of which remains unclear at present.


Subject(s)
Brain/metabolism , Sodium/metabolism , Animals , Animals, Newborn , Astrocytes/metabolism , Brain/diagnostic imaging , Brain Waves , Calcium Signaling , Electrophysiological Phenomena , Hippocampus/metabolism , Hydrogen-Ion Concentration , Mice , Molecular Imaging , Neurons/metabolism
12.
Mitochondrion ; 47: 218-226, 2019 07.
Article in English | MEDLINE | ID: mdl-30529453

ABSTRACT

Aneurysmal subarachnoid hemorrhage (aSAH) is a highly complex disease. Majority of aSAH survivors confront post-SAH complications including cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) that mainly influence the clinical outcome. Tissue damage during early brain injury may lead to release of damage associated molecular pattern molecules (DAMPs) that may initiate and sustain inflammation during the course of aSAH through activation of pattern recognition receptors. Mitochondrial DNA (mtDNA) due to unmethylated CpG motifs acts as a DAMP via binding to toll-like receptor-9. The aim of this study was to investigate the cell free circulating mtDNA in the systemic circulation of aSAH patients and its association with post-SAH complications and clinical outcome. The DNA was extracted from the serum of 80 aSAH patients at days 1, 3, 5, 7, 9, 11, 13 and from 18 healthy controls. Three representative mitochondrial gene fragments including Cytochrome B (CytB), D-Loop and Cytochrome c oxidase subunit-1 (COX-1) were quantified using a Taqman-probes based qPCR. Levels of mtDNA were quantified from standard curves generated using mtDNA extracted from HepG2 cell mitochondria. Clinical outcome of the patients was assessed by Glasgow outcome scale (GOS) and modified Rankin scale (mRS). Clinical data and post-SAH complications were recorded from patient's record file. Serum D-Loop and COX-1 were significantly elevated early after aSAH and remained high over first 2 weeks. CytB levels were however, initially unchanged but elevated later at day 7 as compared to healthy controls. Cumulative levels measured over two weeks showed significant correlations with post-SAH complications including a negative correlation of D-Loop with pneumonia infection, hydrocephalus and occurrence of epilepsy, a positive correlation of Cyt B with occurrence of CVS and a negative correlation of COX-1 with occurrence of systemic infections and seizures. Cumulative D-Loop values negatively correlated with clinical outcome. Our data suggest that mtDNA may directly or indirectly influence post-SAH complications and clinical outcome.


Subject(s)
Brain Ischemia/blood , Cell-Free Nucleic Acids/blood , DNA, Mitochondrial/blood , Intracranial Aneurysm/blood , Subarachnoid Hemorrhage/blood , Aged , Female , Hep G2 Cells , Humans , Male , Middle Aged
13.
Front Cell Neurosci ; 12: 406, 2018.
Article in English | MEDLINE | ID: mdl-30534054

ABSTRACT

Tanycytes are hypothalamic radial glia-like cells that form the basal wall of the third ventricle (3V) where they sense glucose and modulate neighboring neuronal activity to control feeding behavior. This role requires the coupling of hypothalamic cells since transient decreased hypothalamic Cx43 expression inhibits the increase of brain glucose-induced insulin secretion. Tanycytes have been postulated as possible hypothalamic neuronal precursors due to their privileged position in the hypothalamus that allows them to detect mitogenic signals and because they share the markers and characteristics of neuronal precursors located in other neurogenic niches, including the formation of coupled networks through connexins. Using wild-type (WT), Cx30-/- and Cx30-/-, Cx43fl/fl:glial fibrillary acidic protein (GFAP)-Cre (double knockout, dKO) mouse lines, we demonstrated that tanycytes are highly coupled to each other and also give rise to a panglial network specifically through Cx43. Using the human GFAP (hGFAP)-enhanced green fluorescent protein (EGFP) transgenic mouse line, we provided evidence that the main parenchymal-coupled cells were astrocytes. In addition, electrophysiological parameters, such as membrane resistance, were altered when Cx43 was genetically absent or pharmacologically inhibited. Finally, in the dKO mouse line, we detected a significant decrease in the number of hypothalamic proliferative parenchymal cells. Our results demonstrate the importance of Cx43 in tanycyte homotypic and panglial coupling and show that Cx43 function influences the proliferative potential of hypothalamic cells.

14.
Glia ; 66(11): 2397-2413, 2018 11.
Article in English | MEDLINE | ID: mdl-30357924

ABSTRACT

Neurogenesis is sustained throughout life in the mammalian brain, supporting hippocampus-dependent learning and memory. Its permanent alteration by status epilepticus (SE) is associated with learning and cognitive impairments. The mechanisms underlying the initiation of altered neurogenesis after SE are not understood. Glial fibrillary acidic protein-positive radial glia (RG)-like cells proliferate early after SE, but their proliferation dynamics and signaling are largely unclear. We have previously reported a polarized distribution of AMPA receptors (AMPARs) on RG-like cells in vivo and postulated that these may signal their proliferation. Here, we examined the acute effects of kainate on hippocampal precursor cells in vitro and in kainate-induced SE on proliferating and quiescent clones of 5-bromo-2-deoxyuridine prelabeled hippocampal precursors in vivo. In vitro, we found that 5 µM kainate shortened the cell cycle time of RG-like cells via AMPAR activation and accelerated cell cycle re-entry of their progeny. It also shifted their fate choice expanding the population of RG-like cells and reducing the population of downstream amplifying neural progenitors. Kainate enhanced the survival of all precursor cell subtypes. Pharmacologically, kainate's proliferative and survival effects were abolished by AMPAR blockade. Functional AMPAR expression was confirmed on RG-like cells in vitro. In agreement with these observations, kainate/seizures enhanced the proliferation and expansion predominantly of constitutively cycling RG-like cell clones in vivo. Our results identify AMPARs as key potential players in initiating the proliferation of dentate RG-like cells and unravel a possible receptor target for modifying the radial glia-like cell response to SE.


Subject(s)
Cell Proliferation/physiology , Hippocampus/cytology , Neuroglia/pathology , Receptors, AMPA/metabolism , Seizures/pathology , Stem Cells/pathology , Animals , Animals, Newborn , Benzodiazepines/pharmacology , Cell Death/genetics , Cells, Cultured , Excitatory Amino Acid Agonists/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Kainic Acid/pharmacology , Ki-67 Antigen/metabolism , Male , Membrane Potentials/drug effects , Membrane Potentials/genetics , Nerve Tissue Proteins/metabolism , Quinoxalines/pharmacology , Rats , Rats, Wistar , Receptors, AMPA/genetics
15.
Sci Rep ; 8(1): 13929, 2018 09 17.
Article in English | MEDLINE | ID: mdl-30224811

ABSTRACT

The thalamus is important for sensory integration with the ventrobasal thalamus (VB) as relay controlled by GABAergic projections from the nucleus reticularis thalami (NRT). Depending on the [Cl-]i primarily set by cation-chloride-cotransporters, GABA is inhibitory or excitatory. There is evidence that VB and NRT differ in terms of GABA action, with classical hyperpolarization in VB due to the expression of the Cl- extruder KCC2 and depolarizing/excitatory GABA action in the NRT, where KCC2 expression is low and Cl- accumulation by the Cl- inward transporter NKCC1 has been postulated. However, data on NKCC1 expression and functional analysis of both transporters are missing. We show that KCC2-mediated Cl- extrusion set the [Cl-]i in VB, while NKCC1 did not contribute substantially to Cl- accumulation and depolarizing GABA action in the NRT. The finding that NKCC1 did not play a major role in NRT neurons is of high relevance for ongoing studies on the therapeutic use of NKCC1 inhibitors trying to compensate for a disease-induced up-regulation of NKCC1 that has been described for various brain regions and disease states like epilepsy and chronic pain. These data suggest that NKCC1 inhibitors might have no major effect on healthy NRT neurons due to limited NKCC1 function.


Subject(s)
Chlorides/metabolism , Homeostasis/physiology , Thalamus/metabolism , gamma-Aminobutyric Acid/metabolism , Animals , Epilepsy/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Sodium-Potassium-Chloride Symporters/metabolism , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Up-Regulation/physiology , K Cl- Cotransporters
16.
Glia ; 66(7): 1464-1480, 2018 07.
Article in English | MEDLINE | ID: mdl-29493017

ABSTRACT

Microglia, the central nervous system resident innate immune cells, cluster around Aß plaques in Alzheimer's disease (AD). The activation phenotype of these plaque-associated microglial cells, and their differences to microglia distant to Aß plaques, are incompletely understood. We used novel three-dimensional cell analysis software to comprehensively analyze the morphological properties of microglia in the TgCRND8 mouse model of AD in spatial relation to Aß plaques. We found strong morphological changes exclusively in plaque-associated microglia, whereas plaque-distant microglia showed only minor changes. In addition, patch-clamp recordings of microglia in acute cerebral slices of TgCRND8 mice revealed increased K+ currents in plaque-associated but not plaque-distant microglia. Within the subgroup of plaque-associated microglia, two different current profiles were detected. One subset of cells displayed only increased inward currents, while a second subset showed both increased inward and outward currents, implicating that the plaque microenvironment differentially impacts microglial ion channel expression. Using pharmacological channel blockers, multiplex single-cell PCR analysis and RNA fluorescence in situ hybridization, we identified Kir and Kv channel types contributing to the in- and outward K+ conductance in plaque-associated microglia. In summary, we have identified a previously unrecognized level of morphological and electrophysiological heterogeneity of microglia in relation to amyloid plaques, suggesting that microglia may display multiple activation states in AD.


Subject(s)
Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Microglia/pathology , Microglia/physiology , Plaque, Amyloid/pathology , Plaque, Amyloid/physiopathology , Animals , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Cations, Monovalent/metabolism , Disease Models, Animal , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Membrane Potentials/physiology , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Potassium/metabolism , Potassium Channels/metabolism , Tissue Culture Techniques
17.
Mol Brain ; 11(1): 4, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29370841

ABSTRACT

Neuronal inhibition is mediated by glycine and/or GABA. Inferior colliculus (IC) neurons receive glycinergic and GABAergic inputs, whereas inhibition in hippocampus (HC) predominantly relies on GABA. Astrocytes heterogeneously express neurotransmitter transporters and are expected to adapt to the local requirements regarding neurotransmitter homeostasis. Here we analyzed the expression of inhibitory neurotransmitter transporters in IC and HC astrocytes using whole-cell patch-clamp and single-cell reverse transcription-PCR. We show that most astrocytes in both regions expressed functional glycine transporters (GlyTs). Activation of these transporters resulted in an inward current (IGly) that was sensitive to the competitive GlyT1 agonist sarcosine. Astrocytes exhibited transcripts for GlyT1 but not for GlyT2. Glycine did not alter the membrane resistance (RM) arguing for the absence of functional glycine receptors (GlyRs). Thus, IGly was mainly mediated by GlyT1. Similarly, we found expression of functional GABA transporters (GATs) in all IC astrocytes and about half of the HC astrocytes. These transporters mediated an inward current (IGABA) that was sensitive to the competitive GAT-1 and GAT-3 antagonists NO711 and SNAP5114, respectively. Accordingly, transcripts for GAT-1 and GAT-3 were found but not for GAT-2 and BGT-1. Only in hippocampal astrocytes, GABA transiently reduced RM demonstrating the presence of GABAA receptors (GABAARs). However, IGABA was mainly not contaminated by GABAAR-mediated currents as RM changes vanished shortly after GABA application. In both regions, IGABA was stronger than IGly. Furthermore, in HC the IGABA/IGly ratio was larger compared to IC. Taken together, our results demonstrate that astrocytes are heterogeneous across and within distinct brain areas. Furthermore, we could show that the capacity for glycine and GABA uptake varies between both brain regions.


Subject(s)
Astrocytes/metabolism , GABA Plasma Membrane Transport Proteins/metabolism , Glycine Plasma Membrane Transport Proteins/metabolism , Hippocampus/metabolism , Animals , Glycine/pharmacology , Inferior Colliculi , Ion Channel Gating/drug effects , Kinetics , Mice, Inbred C57BL , Single-Cell Analysis , gamma-Aminobutyric Acid/pharmacology
18.
Brain Res Bull ; 136: 26-36, 2018 01.
Article in English | MEDLINE | ID: mdl-27965079

ABSTRACT

Astrocyte K+ channels and the K+ currents they mediate dwarf all other transmembrane conductances in these cells. This defining feature of astrocytes and its functional implications have been investigated intensely over the past decades. Nonetheless, many aspects of astrocyte K+ handling and signaling remain incompletely understood. In this review, we provide an update on the diversity of K+ channels expressed by astrocytes and new functional implications. We focus on inwardly-rectifying K+ channels (particularly Kir4.1), two-pore K+ channels and voltage and Ca2+-dependent K+ channels. We further discuss new insights into the involvement of these K+ channels in K+ buffering, control of synaptic transmission, regulation of the vasculature and in diseases of the central nervous system.


Subject(s)
Astrocytes/metabolism , Potassium Channels/metabolism , Animals , Humans
19.
Cell Tissue Res ; 373(3): 653-670, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29204745

ABSTRACT

The contribution of glial cells to normal and impaired hippocampal function is increasingly being recognized, although important questions as to the mechanisms that these cells use for their crosstalk with neurons and capillaries are still unanswered or lead to controversy. Astrocytes in the hippocampus are morphologically variable and a single cell contacts with its processes more than 100,000 synapses. They predominantly express inward rectifier K+ channels and transporters serving homeostatic function but may also release gliotransmitters to modify neuronal signaling and brain circulation. Intracellular Ca2+ transients are key events in the interaction of astrocytes with neurons and the vasculature. Hippocampal NG2 glia represent a population of cells with proliferative capacity throughout adulthood. Intriguingly, they receive direct synaptic input from pyramidal neurons and interneurons and express a multitude of ion channels and receptors. Despite in-depth knowledge about the features of these transmembrane proteins, the physiological impact of NG2 glial cells and their synaptic input remain nebulous. Because of the low abundance of oligodendrocytes in the hippocampus, limited information is available about their specific properties. Given the multitude of signaling molecules expressed by the various types of hippocampal glial cells (and because of space constraints), we focus, in this review, on those properties that are considered key for the interaction of the respective cell type with its neighborhood.


Subject(s)
Hippocampus/physiology , Neuroglia/cytology , Neuroglia/metabolism , Animals , Astrocytes/cytology , Astrocytes/metabolism , Calcium Signaling , Cell Communication , Interneurons/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Models, Neurological , Oligodendroglia/metabolism , Pyramidal Cells/metabolism , Synapses/metabolism
20.
Sci Rep ; 7: 44817, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28322255

ABSTRACT

Ca2+ signaling in astrocytes is considered to be mainly mediated by metabotropic receptors linked to intracellular Ca2+ release. However, recent studies demonstrate a significant contribution of Ca2+ influx to spontaneous and evoked Ca2+ signaling in astrocytes, suggesting that Ca2+ influx might account for astrocytic Ca2+ signaling to a greater extent than previously thought. Here, we investigated AMPA-evoked Ca2+ influx into olfactory bulb astrocytes in mouse brain slices using Fluo-4 and GCaMP6s, respectively. Bath application of AMPA evoked Ca2+ transients in periglomerular astrocytes that persisted after neuronal transmitter release was inhibited by tetrodotoxin and bafilomycin A1. Withdrawal of external Ca2+ suppressed AMPA-evoked Ca2+ transients, whereas depletion of Ca2+ stores had no effect. Both Ca2+ transients and inward currents induced by AMPA receptor activation were partly reduced by Naspm, a blocker of Ca2+-permeable AMPA receptors lacking the GluA2 subunit. Antibody staining revealed a strong expression of GluA1 and GluA4 and a weak expression of GluA2 in periglomerular astrocytes. Our results indicate that Naspm-sensitive, Ca2+-permeable AMPA receptors contribute to Ca2+ signaling in periglomerular astrocytes in the olfactory bulb.


Subject(s)
Astrocytes/metabolism , Calcium/metabolism , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Receptors, AMPA/metabolism , Animals , Astrocytes/drug effects , Calcium Signaling/drug effects , Fluorescent Antibody Technique , Glutamic Acid/metabolism , Macrolides/pharmacology , Mice , Neurons/metabolism , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, AMPA/chemistry , Receptors, AMPA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...