Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(15): 6383-6390, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37023260

ABSTRACT

In the field of nanotoxicology, the detection and size characterization of nanoparticles (NPs) in biological tissues become increasingly important. To gain information on both particle size and particle distribution in histological sections, laser ablation and single particle inductively coupled plasma-mass spectrometry (LA-spICP-MS) was used in combination with a liquid calibration of dissolved metal standards via a pneumatic nebulizer. In the first step, the particle size distribution of Ag NPs embedded in matrix-matched gelatine standards introduced via LA was compared with that of Ag NPs in a suspension and nebulizer-based ICP-MS. The data show that the particles remained intact by the ablation process as confirmed by transmission electron microscopy. Moreover, the optimized method was applied to CeO2 NPs that are highly relevant for (eco-)toxicological research but, unlike Ag NPs, are multi-shaped and have a broad particle size distribution. Upon analyzing the particle size distribution of CeO2 NPs in cryosections of rat spleen, CeO2 NPs were found to remain unchanged in size over 3 h, 3 d, and 3 weeks post-intratracheal instillation, with the fraction of smaller particles reaching the spleen first. Overall, LA-spICP-MS combined with a calibration based on dissolved metal standards is a powerful tool to simultaneously localize and size NPs in histological sections in the absence of particle standards.


Subject(s)
Laser Therapy , Metal Nanoparticles , Nanoparticles , Rats , Animals , Mass Spectrometry/methods , Calibration , Spectrum Analysis , Nanoparticles/chemistry , Particle Size , Metal Nanoparticles/chemistry
2.
Chem Res Toxicol ; 35(6): 981-991, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35583351

ABSTRACT

Due to the increasing use and production of CeO2 nanoparticles (NPs), the likelihood of exposure especially via the air rapidly grows. However, the uptake of CeO2 NPs via the lung and the resulting distribution into various cell types of remote organs are not well understood because classical analytical methods provide limited spatial information. In this study, laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was combined with immunohistochemical (IHC) staining with lanthanide-labeled antibodies to investigate the distribution of intratracheally instilled CeO2 NPs from the rat lung to lymph nodes, spleen, and liver after 3 h, 3 days, and 21 days. We selected regions of interest after fast imaging using LA-ICP-MS in low-resolution mode and conducted high-resolution LA-ICP-MS in combination with IHC for cellular localization. The lanthanide labeling, which was largely congruent with conventional fluorescent labeling, allowed us to calculate the association rates of Ce to specific cell types. Major portions of Ce were found to be associated with phagocytic cells in the lung, lymph nodes, spleen, and liver. In the lung, almost 94% of the Ce was co-localized with CD68-positive alveolar macrophages after 21 days. Ce was also detected in the lymph nodes outside macrophages 3 h post instillation but shifted to macrophage-associated locations. In the liver, Ce accumulations associated with Kupffer cells (CD163-positive) were found. Ce-containing populations of metallophilic and marginal zone macrophages (both CD169-positive) as well as red pulp macrophages (CD68-positive) were identified as major targets in the spleen. Overall, high-resolution LA-ICP-MS analysis in combination with IHC staining with lanthanide-labeled antibodies is a suitable tool to quantify and localize Ce associated with specific cell types and to estimate their particle burden under in vivo conditions.


Subject(s)
Lanthanoid Series Elements , Laser Therapy , Nanoparticles , Animals , Macrophages , Mass Spectrometry/methods , Rats , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...