Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Artif Organs ; 46(6): 1040-1054, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35006608

ABSTRACT

BACKGROUND: Synthetic tissue engineering scaffolds has poor biocompatiblity with very low angiogenic properties. Conditioning the scaffolds with functional groups, coating with biological components, especially extracellular matrix (ECM), is an excellent strategy for improving their biomechanical and biological properties. METHODS: In the current study, a composite of polycaprolactone and gelatin (PCL/Gel) was electrospun in the ratio of 70/30 and surface modified with 1% gelatin-coating (G-PCL/Gel) or plasma treatment (P-PCL/Gel). The surface modification was determined by SEM and ATR-FTIR spectroscopy, respectively. The scaffolds were cultured with fibroblast 3T3, then decellularized during freeze-thawing process to fabricate a fibroblast ECM-conditioned PCL/Gel scaffold (FC-PCL/Gel). The swelling and degaradtion as well as in vitro and in vivo biocompatibility and angiogenic properties of the scaffolds were evaluated. RESULTS: The structure of the surface-modified G-PCL/Gel and P-PCL/Gel were unique and not changed compared with the PCL/Gel scaffolds. ATR-FTIR analysis admitted the formation of oxygen-containing groups, hydroxyl and carboxyl, on the surface of the P-PCL/Gel scaffold. The SEM micrographs and DAPI staining confirmed the cell attachment and the ECM deposition on the platform and successful removal of the cells after decellularization. P-PCL/Gel showed better cell attachment, ECM secretion and deposition after decellularization compared with G-PCL/Gel. The FC-PCL/Gel was considered as an optimized scaffold for further assays in this study. The FC-PCL/Gel showed increased hydrophilic behavior and cytobiocompatibility compared with P-PCL/Gel. The ECM on the FC-PCL/Gel scaffold showed a gradual degradation during 30 days of degradation time, as a small amount of ECM remained over the FC-PCL/Gel scaffold at day 30. The FC-PCL/Gel showed significant biocompatibility and improved angiogenic property compared with P-PCL/Gel when subcutaneously implanted in a mouse animal model for 7 and 28 days. CONCLUSIONS: Our findings suggest FC-PCL/Gel as an excellent biomimetic construct with high angiogenic properties. This bioengineered construct can serve as a possible application in our future pre-clinical and clinical studies for skin regeneration.


Subject(s)
Gelatin , Tissue Engineering , Animals , Fibroblasts , Gelatin/chemistry , Mice , Polyesters/chemistry , Tissue Engineering/methods , Tissue Scaffolds/chemistry
2.
Environ Sci Pollut Res Int ; 29(2): 2024-2034, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34355328

ABSTRACT

Evidence suggests the association between ambient airborne particulate matters and children's IQ and psychological development in the early stages of life. However, data on the relationship between ambient air particulate matters and children's IQ are rare in developing countries and less privileged areas. In this study, the association between PM10 and PM2.5 and the IQ of children in different areas were investigated in terms of pollution levels. In 2019, 369 children between the ages of 6 and 8 years old were randomly selected in three regions of southern Iran after screening through a questionnaire. In this study, PM10 and PM2.5 were determined using a direct reading device. IQ was surveyed according to Raymond B. Cattell scale I-A. The confounder factors including age, gender, economic conditions, maternal education, and type of delivery were adjusted. The average PM10 in areas with low, medium, and high pollution levels were measured to be 59.14±25.24 µg/m3, 89.7±37.34 µg/m3, and 121.44±43.49 µg/m3, respectively, while PM2.5 were found to be 38.97±16.87 µg/m3, 58±23.94 µg/m3, and 84.18±31.32 µg/m3, respectively. The IQ of children in the area with a high pollution was 16.628 lower than that in the area with low pollution (ß= 16.628; [95% CI: 13.295 to 19.96]; P ≤ 0.0001). In addition, IQ in the area with high pollution level was found to be 7.48 lower than that in moderate pollution. ( ß= 7.489; [95% CI: 4.109 to 10.870]; P ≤ 0.0001). Exposure to increased PM10 and PM2.5 is associated with decreased IQ in children.


Subject(s)
Air Pollutants , Air Pollution , Air Pollution/analysis , Developing Countries , Economic Status , Environmental Exposure/analysis , Intelligence , Particulate Matter/analysis
3.
Sci Rep ; 11(1): 12922, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155256

ABSTRACT

Inflammatory biomarkers in exhaled breath condensate (EBC) are measured to estimate the effects of air pollution on humans. The present study was conducted to investigate the relationship between particulate matter and inflammatory biomarkers in blood plasma and exhaled air in young adults. The obtained results were compared in two periods; i.e., winter and summer. GRIMM Dust Monitors were used to measure PM10, PM2.5, and PM1 in indoor and outdoor air. A total of 40 healthy young adults exhaling air condensate were collected. Then, biomarkers of interleukin-6 (IL-6), Nitrosothiols (RS-NOs), and Tumor necrosis factor-soluble receptor-II (sTNFRII) were measured by 96 wells method ELISA and commercial kits (HS600B R&D Kit and ALX-850-037-KI01) in EBC while interleukin-6 (IL-6), sTNFRII and White Blood Cell (WBC) were measured in blood plasma in two periods of February 2013 (winter) and May 2013 (summer). Significant association was found between particulate matter and the white blood cell count (p < 0.001), as well as plasma sTNFRII levels (p-value = 0.001). No significant relationship was found between particulate matter with RS-NOs (p = 0.128), EBC RSNOs (p-value = 0.128), and plasma IL-6 (p-value = 0.167). In addition, there was no significant relationship between interleukin-6 of exhaled air with interleukin-6 of plasma (p-value < 0.792 in the first period and < 0.890 in the second period). sTNFRII was not detected in EBC. Considering the direct effect between increasing some biomarkers in blood and EBC and particulate matter, it is concluded that air pollution causes this increasing.


Subject(s)
Biomarkers , Exhalation , Inflammation Mediators/metabolism , Particulate Matter/analysis , Adolescent , Adult , Air Pollutants/adverse effects , Air Pollutants/analysis , Breath Tests , Environment , Female , Healthy Volunteers , Humans , Inflammation Mediators/blood , Iran , Male , Young Adult
4.
J Cell Physiol ; 234(12): 23763-23773, 2019 12.
Article in English | MEDLINE | ID: mdl-31173364

ABSTRACT

Olfactory ectomesenchymal stem cells (OE-MSCs) possess the immunosuppressive activity and regeneration capacity and hold a lot of promises for neurodegenerative disorders treatment. This study aimed to determine OE-MSCs which are able to augment and differentiate into functional neurons and regenerate the CNS and also examine whether the implantation of OE-MSCs in the pars compacta of the substantia nigra (SNpc) can improve Parkinson's symptoms in a rat model-induced with 6-hydroxydopamine. We isolated OE-MSCs from lamina propria in olfactory mucosa and characterized them using flow cytometry and immunocytochemistry. The therapeutic potential of OE-MSCs was evaluated by the transplantation of isolated cells using a rat model of acute SN injury as a Parkinson's disease. Significant behavioral improvement in Parkinsonian rats was elicited by the OE-MSCs. The results demonstrate that the expression of PAX2, PAX5, PITX3, dopamine transporter, and tyrosine hydroxylase was increased by OE-MSCs compared to the control group which is analyzed with real-time polymerase chain reaction technique and immunohistochemical staining. In the outcome, the transplantation of 1,1'-dioctadecyl-3,3,3'3'-tetramethyl indocarbocyanine perchlorate labeled OE-MSCs that were fully differentiated to dopaminergic neurons contribute to a substantial improvement in patients with Parkinson's. Together, our results provide that using OE-MSCs in neurodegenerative disorders might lead to better neural regeneration.


Subject(s)
Dopaminergic Neurons/cytology , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Olfactory Mucosa/cytology , Parkinson Disease/therapy , Animals , Cell- and Tissue-Based Therapy/methods , Cells, Cultured , Dopamine Plasma Membrane Transport Proteins/biosynthesis , Homeodomain Proteins/biosynthesis , Male , Mesenchymal Stem Cells/metabolism , PAX2 Transcription Factor/biosynthesis , PAX5 Transcription Factor/biosynthesis , Rats , Rats, Wistar , Transcription Factors/biosynthesis , Tyrosine 3-Monooxygenase/biosynthesis
5.
Sci Total Environ ; 646: 105-110, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30053660

ABSTRACT

The relationship between air pollution and childhood cancer is inconclusive. We investigated the associations between exposure to ambient air pollution and childhood cancers in Tehran, Iran. This project included children between 1 and 15 years-of-age with a cancer diagnosis by the Center for the Control of Non Communicable Disease (n = 161) during 2007 to 2009. Controls were selected randomly within the city using a Geographic Information System (GIS) (n = 761). The cases were geocoded based on exact home addresses. Air pollution exposure of cases and random controls were estimated by a previously developed Land Use Regression (LUR) model for the 2010 calendar year. The annual mean concentrations of Particulate Matter ≤ 10 µm (PM10), nitrogen dioxide (NO2) and sulfur dioxide (SO2) in the locations of cancer cases were 101.97 µg/m3, 49.42 ppb and 38.92 ppb respectively, while in the random control group, respective mean exposures were 98.63 µg/m3, 45.98 ppb and 38.95 ppb. A logistic regression model was used to find the probability of childhood cancer per unit increase in PM10, NO2 and SO2. We observed a positive association between exposures to PM10 with childhood cancers. We did, however, observe a positive, but not statistically significant association between NO2 exposure and childhood cancer. Our study is the first to highlight an association between air pollution exposure and childhood cancer risk in Iran, however these findings require replication through future studies.


Subject(s)
Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Neoplasms/epidemiology , Air Pollutants/analysis , Child , Humans , Iran/epidemiology , Nitrogen Dioxide , Particulate Matter
6.
J Biochem Mol Toxicol ; 32(8): e22166, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29975447

ABSTRACT

Due to the association of oxidative stress and telomere shortening, it was aimed in the present study to investigate the possibility whether cyclosporine-A exerts its nephrotoxic side effects via induction of oxidative stress-induced renal telomere shortening and senescent phenotype in renal tissues of rats. Renal oxidative stress markers, 8-hydroxydeoxyguanosine, malondialdehyde, and protein carbonyl groups were measured by standard methods. Telomere length and telomerase activity were also evaluated in kidney tissue samples. Results showed that cyclosporine-A treatment significantly (P < 0.05) enhanced renal malondialdehyde, 8-hydroxydeoxyguanosine, and protein carbonyl groups levels, decreased renal telomere length, and deteriorated renal function compared with the controls. Renal telomerase activity was not affected by cyclosporine-A. Renal telomere length could be considered as an important parameter of both oxidative stress and kidney function. Telomere shortening and accelerated kidney aging may be caused by cyclosporine-induced oxidative stress, indicating the potential mechanism of cyclosporine-induced nephrotoxicity.


Subject(s)
Cyclosporine/toxicity , Immunosuppressive Agents/toxicity , Kidney/drug effects , Oxidative Stress/drug effects , Telomere Shortening , Aging/genetics , Animals , Biomarkers/metabolism , Body Weight , Creatinine/blood , Kidney/enzymology , Kidney/metabolism , Kidney/physiology , Male , Rats, Wistar , Telomerase/metabolism , Urea/blood
7.
Med Arch ; 72(2): 88-93, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29736095

ABSTRACT

INTRODUCTION: The repair of critical-sized defects (CSDs) are one of the most challenging orthopedic problems and the attempts for development of an ideal scaffold for treatment of large bone defect are ongoing. AIM: The aim of this study was the effectiveness of hydroxyapatite-gelatin seeded with bone marrow stromal cells construct for healing of critical-sized bone defect in vivo. MATERIAL AND METHODS: In this experimental study, the bone marrow stromal cells (BMSCs) were isolated by flushing method. For in vitro study, the cells were seeded on the scaffold and the cell viability as well as cytotoxicity were tested by MTT and LDH specific activity. The scaffold-cell construct was implanted into the critical-sized bone defect created in calvaria of Wistar male rats.15 rats were randomly divided into 3 groups (n=5), group 1 (control group): Injury without transplantation, group 2: implanted with hydroxyapatite-gelatin scaffold, group 3: hydroxyapatite-gelatin scaffold seeded with BMSCs. At different days post-implantation, the implanted site was collected and the bone healing was evaluated through H&E and Masson's Trichrome staining. ANOVA and paired t-test were used for data comparison and P<0.05 was considered significant. RESULTS: The results of MTT showed that the scaffold has no toxic effects on stromal cells. The first signs of ossification in hydroxyapatite-gelatin with BMSCs cells group appeared in the first week. However, in the fourth week, ossification was completed and the scaffold remaining was found as embedded islands in the spongy bone tissue. The greatest number of lymphocytes in the experimental group was observed after one week of planting scaffold. CONCLUSION: Hydroxyapatite-gelatin scaffold coated with BMSCs cells has a potential role in the healing process of bone and would be a possible new therapeutic strategy to repair extensive bone lesions.


Subject(s)
Craniofacial Abnormalities/surgery , Durapatite/therapeutic use , Gelatin/therapeutic use , Mesenchymal Stem Cell Transplantation/methods , Skull/surgery , Tissue Scaffolds , Animals , Male , Rats , Rats, Wistar
8.
PLoS One ; 13(4): e0195971, 2018.
Article in English | MEDLINE | ID: mdl-29664915

ABSTRACT

Mutations in PITX2 have been implicated in several genetic disorders, particularly Axenfeld-Rieger syndrome. In order to determine the most reliable bioinformatics tools to assess the likely pathogenicity of PITX2 variants, the results of bioinformatics predictions were compared to the impact of variants on PITX2 structure and function. The MutPred, Provean, and PMUT bioinformatic tools were found to have the highest performance in predicting the pathogenicity effects of all 18 characterized missense variants in PITX2, all with sensitivity and specificity >93%. Applying these three programs to assess the likely pathogenicity of 13 previously uncharacterized PITX2 missense variants predicted 12/13 variants as deleterious, except A30V which was predicted as benign variant for all programs. Molecular modeling of the PITX2 homoedomain predicts that of the 31 known PITX2 variants, L54Q, F58L, V83F, V83L, W86C, W86S, and R91P alter PITX2's structure. In contrast, the remaining 24 variants are not predicted to change PITX2's structure. The results of molecular modeling, performed on all the PITX2 missense mutations located in the homeodomain, were compared with the findings of eight protein stability programs. CUPSAT was found to be the most reliable in predicting the effect of missense mutations on PITX2 stability. Our results showed that for PITX2, and likely other members of this homeodomain transcription factor family, MutPred, Provean, PMUT, molecular modeling, and CUPSAT can reliably be used to predict PITX2 missense variants pathogenicity.


Subject(s)
Algorithms , Computational Biology/methods , Computer Simulation , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Mutation , Transcription Factors/chemistry , Transcription Factors/genetics , Alleles , Amino Acid Sequence , Databases, Genetic , Homeodomain Proteins/metabolism , Humans , Models, Molecular , Phenotype , Protein Conformation , Protein Stability , Structure-Activity Relationship , Transcription Factors/metabolism , Homeobox Protein PITX2
9.
Gene ; 658: 191-197, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29526601

ABSTRACT

AIM: Life events are series of events that disrupt a person's psychological equilibrium and may enhance the development of a disorder such as suicide. Several studies have assessed a relationship between 5-hydroxytryptamine (serotonin) 2A receptor (5-HTR2A) gene polymorphisms with an increased risk of suicide. However, there has been no study about the association between three 5-HTR2A gene polymorphisms, A1438G (rs6311), T102C (rs6313) and C1354T (rs6314), suicide, stressful life, and loss events in a same time. METHODS: Relatives of 191 suicide victims were interviewed using a semi-structured questionnaire designed according to Iranian culture. Venous blood was taken from all subjects for DNA isolation. 5-HTR2A polymorphisms in a total of 191 suicide victims and 218 healthy controls were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Chi-squared and Fisher's exact tests were used to compare genotype and allele frequencies between suicide and control groups. Correction for multiple comparisons was calculated using Bonferroni correction. RESULTS: There was a significant association between the 102 C/C genotype of 5-HTR2A gene and suicide (к2 = 8.700, P = 0.012). Furthermore, we found that suicide victims with a 102 C/C genotype had a significantly higher number of stressful life and loss events (P < 0.05). Genotype and allele distributions of A1438G (rs6311) and C1354T (rs6314) polymorphisms of 5-HTR2A gene showed no differences between suicide victims and control participants and there was no association between genotype distribution and higher number of stressful life and loss events (P > 0.05). CONCLUSION: Our results suggest that C102T (rs6313) polymorphism of 5-HTR2A gene may be involved in the susceptibility to suicide, higher number of stressful life and loss events, but A1438G (rs6311) and C1354T (rs6314) polymorphisms of 5-HTR2A gene were not associated with suicide, higher number of stressful life and loss events.


Subject(s)
Life Change Events , Receptor, Serotonin, 5-HT2A/genetics , Stress, Psychological/genetics , Suicide , Adult , Aged , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Humans , Iran , Male , Middle Aged , Polymorphism, Restriction Fragment Length , Polymorphism, Single Nucleotide , Young Adult
10.
Metab Brain Dis ; 33(1): 107-114, 2018 02.
Article in English | MEDLINE | ID: mdl-29080083

ABSTRACT

Temporal lobe epilepsy (TLE) is a common form of drug-resistant epilepsy that sometimes responds to dietary manipulation such as the 'ketogenic diet'. Here we have investigated the effects of metformin in the rat pilocaroin model of TLE. Male rats were treated with intra peritoneal injection of pilocarpine hydrochloride, in dose of 360 mg/kg to induce status epilepticus (SE). At 45 day after induction of SE, metformin was injected intraperitoneally in dose of 250 mg/kg/day for 5 days. We show that metformin potently reduces the progression of seizures and blocks seizure-induced over-expression of brain-derived neurotropic factor (BDNF) and its receptor, Tropomyosin receptor kinase B (TrkB). We have shown that this reduced expression pattern is mediated by the transcriptional co-repressor CtBP (C-terminal binding protein). Moreover, metformin decreased mechanistic target of rapamycin (mTOR) activation through activation of AMP-activated protein kinase (AMPK) signaling pathway. Our findings have been shown that metformin has anticonvulsant and antiepileptic properties, and suggesting that antiglycolytic compounds such as metformin may represent a new class of drugs for treating epilepsy.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy, Temporal Lobe/drug therapy , Metformin/pharmacology , Seizures/drug therapy , Animals , Disease Models, Animal , Male , Pilocarpine/pharmacology , Rats, Wistar , Seizures/chemically induced
11.
Basic Clin Neurosci ; 9(6): 408-416, 2018.
Article in English | MEDLINE | ID: mdl-30719255

ABSTRACT

INTRODUCTION: The resistance of temporal lobe epilepsy to classic drugs is thought to be due to disruption in the excitation/inhibition of this pathway. Two chloride transporters, NKCC1 and KCC2, are expressed differently for the excitatory state of Gamma-Amino Butyric Acid (GABA). The present study explored the effect of bumetanide as a selective NKCC1 inhibitor either alone or in combination with the phenobarbital in the pilocarpine model of epilepsy. METHODS: An animal model of Status Epilepticus (SE) was induced with pilocarpine in Wistar male rats followed by phenobarbital and or bumetanide or saline administration for 45 days after the induction of SE by Intraperitoneal (IP) injection. The rats were monitored, their behavior was recorded, and after 24 hours they were sacrificed to study the expression of NKCC1 and KCC2 using real time PCR. RESULTS: The data showed that the effects of a combination of bumetanide with phenobarbital on frequency rate and duration of seizure attack were more than those of the phenobarbital alone. In addition, in the bumetanide and combined treatment groups, NKCC1 expression decreased significantly, compared with untreated epileptic animals. A delayed decrement in NKCC1/KCC2 expression ratio after bumetanide application was also observed. CONCLUSION: The combination of bumetanide with phenobarbital increases the inhibition of SE and maximizes the potential of GABA signaling pathway, and can be considered as an effective therapeutic strategy in patients with epilepsy.

12.
Braz. arch. biol. technol ; 61: e17160733, 2018. tab, graf
Article in English | LILACS | ID: biblio-951497

ABSTRACT

ABSTRACT Background: Her-2 and ESR1 genes, that interact in the cell signaling pathway, are the most important molecular markers of breast cancer, which have been amplified or overexpressed in 30% and 70%, respectively. This study was performed to evaluate the gene expression levels of Her-2 and ESR1 genes in tumor cells and its adjacent normal tissue of breast cancer patients and compared them whit clinical-pathological features. Methods: In total, 80 tissue specimens from 40 patients, with an average age of 48.47 years, were examined by Real-time PCR technique, and ultimately evaluated the expression level of Her-2 and ESR1genes. The data were analyzed by REST 2009 V2.0.13 statistical software. Results: HER2 and ESR1 overexpression was identified in 19 (48%) and 12 (30%) of 40 patients respectively, which was higher and lower than that recorded in international statistics, respectively. ESR1 overexpression was associated with Stage 3A and lymph node involvement 2 (N2) (P = 0.04 and P = 0.047, respectively). No significant correlation was observed between the expression of HER2 and ESR1 and other clinical-pathological features, however, the relative differences were identified in the expression levels of genes between main group and groups that were classified according to the clinical-pathological features and age. Conclusions: Overexpression of Her-2 and ESR1 genes in the patients of our study are higher and lower than international statistics, respectively, indicating the differences in genetic, environmental and ethnic factors that involved in the developing of breast cancer.

13.
Water Sci Technol ; 76(11-12): 3340-3350, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29236013

ABSTRACT

In this research, the levels of polychlorinated biphenyls (PCBs) were investigated in the marine sediments of Asaluyeh harbor, in the Persian Gulf. The samples were taken from industrial, semi-industrial and urban regions. The mean concentration levels of total (Σ) 18 detected PCBs were 514.32, 144.67 and 31.6 pg/g dw for the industrial, semi-industrial and urban sampling stations, respectively. Based on a multivariate statistical analysis, it was found that high contamination levels of PCBs in sediments collected along the Persian Gulf were associated with releases from local industries. Total organic carbon (TOC) content was significantly and positively correlated with the concentrations of PCB congeners. World Health Organization toxic equivalents (TEQs) for PCBs ranged from 0.04 to 2.66 pg TEQ/g dry weight (dw) in the coastal sediments. The TEQ values in this study were higher than many reported worldwide in the literature for sediments. This suggests that there are high levels of contamination in the area due to industrial and other human activities.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Industrial Waste/analysis , Polychlorinated Biphenyls/chemistry , Water Pollutants, Chemical/chemistry , Humans , Indian Ocean , Iran
14.
Anat Cell Biol ; 50(2): 107-114, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28713614

ABSTRACT

Cerebrospinal fluid (CSF) contains several molecules which are essential for neurogenesis. Human dental pulp stem cells (hDPSCs) are putatively neural crest cell-derived that can differentiate into neurons and glial cells under appropriate neurotrophic factors. The aim of this study was to induce differentiation of hDPSCs into neuroglial phenotypes using retinoic acid (RA) and CSF. The hDPSCs from an impacted third molar were isolated by mechanical and digestion and cultured. The cells have treated by 10-7 µM RA (RA group) for 8 days, 10% CSF (CSF group) for 8 days and RA with CSF for 8 days (RA/CSF group). Nestin, microtubule-associated protein 2 (MAP2), and glial fibrillary acidic protein immunostaining were used to examine the differentiated cells. Axonal outgrowth was detected using Bielschowsky's silver impregnation method and Nissl bodies were stained in differentiated cells by Cresyl violet. The morphology of differentiated cells in treated groups was significantly changed after 3-5 days. The results of immunocytochemistry showed the presence of neuroprogenitor marker nestin was seen in all groups. However, the high percentage of nestin positive cells and MAP2, as mature neural markers, were observed at the pre-induction and induction stage, respectively. Nissl bodies were detected as dark-blue particles in the cytoplasm of treated cells. Our findings showed the RA as pre-inducer and CSF as inducer for using in vitro differentiation of neuron-like cells and neuroglial cells from hDPSCs.

15.
PLoS One ; 12(6): e0178518, 2017.
Article in English | MEDLINE | ID: mdl-28575017

ABSTRACT

The neurodegenerative disease glaucoma is one of the leading causes of blindness in the world. Glaucoma is characterized by progressive visual field loss caused by retinal ganglion cell (RGC) death. Both surgical glaucoma treatments and medications are available, however, they only halt glaucoma progression and are unable to reverse damage. Furthermore, many patients do not respond well to treatments. It is therefore important to better understand the mechanisms involved in glaucoma pathogenesis. Patients with Axenfeld-Rieger syndrome (ARS) offer important insight into glaucoma progression. ARS patients are at 50% risk of developing early onset glaucoma and respond poorly to treatments, even when surgical treatments are combined with medications. Mutations in the transcription factor FOXC1 cause ARS. Alterations in FOXC1 levels cause ocular malformations and disrupt stress response in ocular tissues, thereby contributing to glaucoma progression. In this study, using biochemical and molecular techniques, we show that FOXC1 regulates the expression of RAB3GAP1, RAB3GAP2 and SNAP25, three genes with central roles in both exocytosis and endocytosis, responsible for extracellular trafficking. FOXC1 positively regulates RAB3GAP1 and RAB3GAP2, while either increase or decrease in FOXC1 levels beyond its normal range results in decreased SNAP25. In addition, we found that FOXC1 regulation of RAB3GAP1, RAB3GAP2 and SNAP25 affects secretion of Myocilin (MYOC), a protein associated with juvenile onset glaucoma and steroid-induced glaucoma. The present work reveals that FOXC1 is an important regulator of exocytosis and establishes a new link between FOXC1 and MYOC-associated glaucoma.


Subject(s)
Cytoskeletal Proteins/metabolism , Exocytosis , Eye Proteins/metabolism , Forkhead Transcription Factors/physiology , Glycoproteins/metabolism , Synaptosomal-Associated Protein 25/physiology , rab3 GTP-Binding Proteins/physiology , Forkhead Transcription Factors/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Luciferases/genetics , RNA, Messenger/genetics , Synaptosomal-Associated Protein 25/genetics , Transcriptional Activation , rab3 GTP-Binding Proteins/genetics
16.
Hum Mutat ; 38(2): 169-179, 2017 02.
Article in English | MEDLINE | ID: mdl-27804176

ABSTRACT

Mutations in the forkhead box C1 gene (FOXC1) cause Axenfeld-Rieger syndrome (ARS). Here, we investigated the effect of four ARS missense variants on FOXC1 structure and function, and examined the predictive value of four in silico programs for all 31 FOXC1 missense variants identified to date. Molecular modeling of the FOXC1 forkhead domain predicts that c.402G> A (p.C135Y) alters FOXC1's structure. In contrast, c.378A> G (p.H128R) and c.481A> G (p.M161V) are not predicted to change FOXC1's structure. Functional analysis indicates that p.H128R reduced DNA binding, transactivation, nuclear localization, and has a longer protein half-life than normal. p.C135Y significantly disrupts FOXC1's DNA binding, transactivation, and nuclear localization. p.M161V reduces transactivation capacity without affecting other FOXC1 functions. C.1103C> A (p.T368N) is indistinguishable from wild-type FOXC1 in all tests, consistent with being a rare benign variant. Comparison of these four variants, plus 18 previously characterized FOXC1 missense variants, with predictions from four commonly used in silico bioinformatics programs indicated that sorting intolerant from tolerant (SIFT), polymorphism phenotyping (PolyPhen-2), and MutPred can sensitively identify as pathogenic only FOXC1 mutations with significant functional defects. This information was used to predict, as disease-causing, nine additional FOXC1 missense variations. Importantly, our results indicate SIFT, PolyPhen-2, and MutPred can reliably be used to predict missense variant pathogenicity for forkhead transcription factors.


Subject(s)
Anterior Eye Segment/abnormalities , Computational Biology , Eye Abnormalities/genetics , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/genetics , Models, Molecular , Mutation , Alleles , Amino Acid Sequence , Computational Biology/methods , Eye Abnormalities/diagnosis , Eye Diseases, Hereditary , Forkhead Transcription Factors/metabolism , Gene Expression , Genotype , HeLa Cells , Humans , Mutation, Missense , Protein Conformation , Software , Structure-Activity Relationship , Trans-Activators/metabolism
17.
Braz. arch. biol. technol ; 60: e17160741, 2017. tab, graf
Article in English | LILACS | ID: biblio-951441

ABSTRACT

ABSTRACT Bioflavonoid-containing diets have been reported to be beneficial in diabetes. In the current study, the effect of Biochanin A (BCA) on blood glucose, antioxidant enzyme activities and oxidative stress markers in diabetic rats were investigated. 30 male Wistar rats were divided into five groups. Two of them were selected as control; group1: control (receiving 0.5%DMSO), and group2: Control+BCA (receiving 10 mg/kg.bw BCA). Diabetes was induced in other rats with injection of (55 mg/kg.bw) streptozotocin; group3: diabetic control (receiving 0.5%DMSO), groups 4 and 5 were treated with 10 and 15 mg/kg.bw BCA respectively. After 6 weeks the following results were obtained. Fasting blood glucose (FBG), Triglyceride (TG), total cholesterol (TC), low density lipoprotein cholesterol (LDL-C), very low density lipoprotein cholesterol (VLDL-C) and malondialdehyde (MDA) levels significantly increased and body weight, high density lipoprotein cholesterol (HDL-C), superoxide dismutase (SOD) and catalase (CAT) activity and total antioxidant status (TAS) significantly decreased in diabetic rats as compared to control rats. Oral administration of BCA in 10 and 15 mg/kg.bw, FBG, TG, TC, LDL-C, VLDL-C were decreased significantly in all treated rats. MDA was decreased in all treated rats but it was significant just in 15 mg/kg.bw BCA. HDL, CAT, SOD, and TAS were significantly increased in treated group with 15 mg/kg.bw. The obtained results indicated hypoglycemic and hypolipidemic effect of BCA. Also BCA reduced oxidative stress in diabetic rats.

18.
Braz. arch. biol. technol ; 60: e17160733, 2017. tab, graf
Article in English | LILACS | ID: biblio-951442

ABSTRACT

ABSTRACT Background: Her-2 and ESR1 genes, that interact in the cell signaling pathway, are the most important molecular markers of breast cancer, which have been amplified or overexpressed in 30% and 70%, respectively. This study was performed to evaluate the gene expression levels of Her-2 and ESR1 genes in tumor cells and its adjacent normal tissue of breast cancer patients and compared them whit clinical-pathological features. Methods: In total, 80 tissue specimens from 40 patients, with an average age of 48.47 years, were examined by Real-time PCR technique, and ultimately evaluated the expression level of Her-2 and ESR1genes. The data were analyzed by REST 2009 V2.0.13 statistical software. Results: HER2 and ESR1 overexpression was identified in 19 (48%) and 12 (30%) of 40 patients respectively, which was higher and lower than that recorded in international statistics, respectively. ESR1 overexpression was associated with Stage 3A and lymph node involvement 2 (N2) (P = 0.04 and P = 0.047, respectively). No significant correlation was observed between the expression of HER2 and ESR1 and other clinical-pathological features, however, the relative differences were identified in the expression levels of genes between main group and groups that were classified according to the clinical-pathological features and age. Conclusions: Overexpression of Her-2 and ESR1 genes in the patients of our study are higher and lower than international statistics, respectively, indicating the differences in genetic, environmental and ethnic factors that involved in the developing of breast cancer.

19.
Braz. arch. biol. technol ; 60: e17160414, 2017. tab
Article in English | LILACS | ID: biblio-839079

ABSTRACT

ABSTRACT Next-generation sequencing (NGS) is the catch all terms that used to explain several different modern sequencing technologies which let us to sequence nucleic acids much more rapidly and cheaply than the formerly used Sanger sequencing, and as such have revolutionized the study of molecular biology and genomics with excellent resolution and accuracy. Over the past years, many academic companies and institutions have continued technological advances to expand NGS applications from research to the clinic. In this review, the performance and technical features of current NGS platforms were described. Furthermore, advances in the applying of NGS technologies towards the progress of clinical molecular diagnostics were emphasized. General advantages and disadvantages of each sequencing system are summarized and compared to guide the selection of NGS platforms for specific research aims.

20.
Water Sci Technol ; 74(4): 957-73, 2016.
Article in English | MEDLINE | ID: mdl-27533870

ABSTRACT

The distribution and toxicity levels of 16 EPA priority pollutant polycyclic aromatic hydrocarbons (PAHs) in the sediments of Asaluyeh shore, Iran were investigated. The total concentrations of the PAHs in surface sediments ranged from 1,054 to 17,448 ng/g dry weights with a mean concentration of 8,067 ng/g. The spatial distribution of PAHs showed that PAH levels are much higher in the industrial areas in comparison with urban areas. Based on diagnostic ratios, pyrogenic activities were dominant sources of PAHs pollution in sediments comparing petroleum sources. The toxic equivalent concentrations (TEQ Carc) of PAHs ranged from 172 to 2,235 ng TEQ/g with mean value of 997.9. Toxicity levels were evaluated using sediment quality guidelines (SQGs) and toxic equivalent factors. Samples were collected from industrial and urban stations in Asaluyeh shores. According to SQGs, ΣPAHs concentrations in sediments of urban areas were below the ERL (effects range low), but the industrial samples had ΣPAHs concentrations between ERL and ERM (effects range median). Furthermore, ΣHPAHs (heavy PAHs) and some individual PAHs in some industrial stations exceeded ERM, indicating adverse ecological risk effects frequently occur. Findings demonstrate that the surface sediment from Asaluyeh shore is highly to very highly contaminated with PAHs.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/chemistry , Water Pollutants, Chemical/chemistry , Extraction and Processing Industry , Iran , Petroleum , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...