Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
ASAIO J ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905594

ABSTRACT

Target values for arterial carbon dioxide tension (PaCO2) in extracorporeal membrane oxygenation (ECMO) for acute respiratory distress syndrome (ARDS) are unknown. We hypothesized that lower PaCO2 values on ECMO would be associated with lighter sedation. We used data from two independent patient cohorts with ARDS spending 1,177 days (discovery cohort, 69 patients) and 516 days (validation cohort, 70 patients) on ECMO and evaluated the associations between daily PaCO2, pH, and bicarbonate (HCO3) with sedation. Median PaCO2 was 41 (interquartile range [IQR] = 37-46) mm Hg and 41 (IQR = 37-45) mm Hg in the discovery and the validation cohort, respectively. Lower PaCO2 and higher pH but not bicarbonate (HCO3) served as significant predictors for reaching a Richmond Agitation Sedation Scale (RASS) target range of -2 to +1 (lightly sedated to restless). After multivariable adjustment for mortality, tracheostomy, prone positioning, vasoactive inotropic score, Simplified Acute Physiology Score (SAPS) II or Sequential Organ Failure Assessment (SOFA) Score and day on ECMO, only PaCO2 remained significantly associated with the RASS target range (adjusted odds ratio 1.1 [95% confidence interval (CI) = 1.01-1.21], p = 0.032 and 1.29 [95% CI = 1.1-1.51], p = 0.001 per mm Hg decrease in PaCO2 for the discovery and the validation cohort, respectively). A PaCO2 ≤40 mm Hg, as determined by the concordance probability method, was associated with a significantly increased probability of a sedation level within the RASS target range in both patient cohorts (adjusted odds ratio = 2.92 [95% CI = 1.17-7.24], p = 0.021 and 6.82 [95% CI = 1.50-31.0], p = 0.013 for the discovery and the validation cohort, respectively).

2.
ASAIO J ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38728743

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening condition affecting >10% of intensive care unit (ICU) patients worldwide with a mortality of up to 59% depending on severity. Extracorporeal membrane oxygenation (ECMO) is a potentially life-saving procedure in severe ARDS but is technically and financially challenging. In recent years, various scoring systems have been proposed to select patients most likely to benefit from ECMO, with the PREdiction of Survival on ECMO Therapy (PRESET) score being one of the most used. We collected data from 283 patients with ARDS of various etiology who underwent veno-venous (V-V) ECMO therapy at a German tertiary care ICU from January 2012 to December 2022. Median age in the cohort was 56 years, and 64.31% were males. The in-hospital mortality rate was 50.88% (n = 144). The median (25%; 75% quartile) severity scores were 38 (31; 49) for Simplified Acute Physiology Score (SAPS) II, 12 (10; 13) for Sequential Organ Failure Assessment (SOFA) and 7 (5; 8) for PRESET. Simplified Acute Physiology Score-II displayed the best prognostic value (area under the receiver operating characteristic [AUROC]: 0.665 [confidence interval (CI): 0.574-0.756; p = 0.046]). Prediction performance was weak in all analyzed scores despite good calibration. Simplified Acute Physiology Score-II had the best discrimination after adjustment of our original cohort. The use of scores explored in this study for patient selection for eligibility for V-V ECMO is not recommendable.

3.
Membranes (Basel) ; 13(10)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37887981

ABSTRACT

Extracorporeal membrane oxygenation (ECMO) is an important rescue therapy method for the treatment of severe hypoxic lung injury. In some cases, oxygen saturation and oxygen partial pressure in the arterial blood are low despite ECMO therapy. There are case reports in which patients with such instances of refractory hypoxemia received a second membrane lung, either in series or in parallel, to overcome the hypoxemia. It remains unclear whether the parallel or serial connection is more effective. Therefore, we used an improved version of our full-flow ECMO mock circuit to test this. The measurements were performed under conditions in which the membrane lungs were unable to completely oxygenate the blood. As a result, only the photometric pre- and post-oxygenator saturations, blood flow and hemoglobin concentration were required for the calculation of oxygen transfer rates. The results showed that for a pre-oxygenator saturation of 45% and a total blood flow of 10 L/min, the serial connection of two identical 5 L rated oxygenators is 17% more effective in terms of oxygen transfer than the parallel connection. Although the idea of using a second membrane lung if refractory hypoxia occurs is intriguing from a physiological point of view, due to the invasiveness of the solution, further investigations are needed before this should be used in a wider clinical setting.

4.
ASAIO J ; 69(8): 789-794, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37146598

ABSTRACT

Interhospital transport of acute respiratory distress syndrome (ARDS) patients bears transport-associated risks. It is unknown how interhospital extracorporeal membrane oxygenation (ECMO) transfer of COVID-19 patients by mobile ECMO units affects ARDS mortality. We compared the outcome of 94 COVID-19 patients cannulated in primary care hospitals and retrieved by mobile ECMO-teams to that of 84 patients cannulated at five German ECMO centers. Patients were recruited from March 2020 to November 2021. Twenty-six transports were airborne, 68 were land-based. Age, sex, body-mass-index, Simplified Acute Physiology Score (SAPS) II, days invasively ventilated, and P/F-Ratio before ECMO initiation were similar in both groups. Counting only regional transports (≤250 km), mean transport distance was 139.5 km ± 17.7 km for helicopter (duration 52.5 ± 10.6 minutes) and 69.8 km ± 44.1 km for ambulance or mobile intensive care unit (duration 57.6 ± 29.4 minutes). Overall time of vvECMO support (20.4 ± 15.2 ECMO days for transported patients vs. 21.0 ± 20.5 for control, p = 0.83) and days invasively ventilated (27.9 ± 18.1 days vs. 32.6 ± 25.1 days, p = 0.16) were similar. Overall mortality did not differ between transported patients and controls (57/94 [61%] vs. 51/83 [61%], p = 0.43). COVID-19 patients cannulated and retrieved by mobile ECMO-teams have no excess risk compared with patients receiving vvECMO at experienced ECMO centers. Patients with COVID-19-associated ARDS, limited comorbidities, and no contraindication for ECMO should be referred early to local ECMO centers.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Pneumonia , Respiratory Distress Syndrome , Humans , Extracorporeal Membrane Oxygenation/adverse effects , Retrospective Studies , COVID-19/therapy , Ambulances , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/therapy
5.
J Clin Med ; 11(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36362465

ABSTRACT

Background: There is ongoing debate whether lung physiology of COVID-19-associated acute respiratory distress syndrome (ARDS) differs from ARDS of other origin. Objective: The aim of this study was to analyze and compare how critically ill patients with COVID-19 and Influenza A or B were ventilated in our tertiary care center with or without extracorporeal membrane oxygenation (ECMO). We ask if acute lung failure due to COVID-19 requires different intensive care management compared to conventional ARDS. Methods: 25 patients with COVID-19-associated ARDS were matched to a cohort of 25 Influenza patients treated in our center from 2011 to 2021. Subgroup analysis addressed whether patients on ECMO received different mechanical ventilation than patients without extracorporeal support. Results: Compared to Influenza-associated ARDS, COVID-19 patients had higher ventilatory system compliance (40.7 mL/mbar [31.8-46.7 mL/mbar] vs. 31.4 mL/mbar [13.7-42.8 mL/mbar], p = 0.198), higher ventilatory ratio (1.57 [1.31-1.84] vs. 0.91 [0.44-1.38], p = 0.006) and higher minute ventilation at the time of intubation (mean minute ventilation 10.7 L/min [7.2-12.2 L/min] for COVID-19 vs. 6.0 L/min [2.5-10.1 L/min] for Influenza, p = 0.013). There were no measurable differences in P/F ratio, positive end-expiratory pressure (PEEP) and driving pressures (ΔP). Respiratory system compliance deteriorated considerably in COVID-19 patients on ECMO during 2 weeks of mechanical ventilation (Crs, mean decrease over 2 weeks -23.87 mL/mbar ± 32.94 mL/mbar, p = 0.037) but not in ventilated Influenza patients on ECMO and less so in ventilated COVID-19 patients without ECMO. For COVID-19 patients, low driving pressures on ECMO were strongly correlated to a decline in compliance after 2 weeks (Pearson's R 0.80, p = 0.058). Overall mortality was insignificantly lower for COVID-19 patients compared to Influenza patients (40% vs. 48%, p = 0.31). Outcome was insignificantly worse for patients requiring veno-venous ECMO in both groups (50% mortality for COVID-19 on ECMO vs. 27% without ECMO, p = 0.30/56% vs. 34% mortality for Influenza A/B with and without ECMO, p = 0.31). Conclusion: The pathophysiology of early COVID-19-associated ARDS differs from Influenza-associated acute lung failure by sustained respiratory mechanics during the early phase of ventilation. We question whether intubated COVID-19 patients on ECMO benefit from extremely low driving pressures, as this appears to accelerate derecruitment and consecutive loss of ventilatory system compliance.

6.
ASAIO J ; 68(9): 1197-1203, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36066356

ABSTRACT

Low flow extracorporeal carbon dioxide removal (ECCO2R) is a promising approach to correct hypercapnic lung failure, facilitate lung protective ventilation in acute respiratory distress syndrome and to possibly prevent the application of invasive ventilation. However, the predominant availability of adult membrane lungs (MLs) at most intensive care units are burdens for low flow ECCO2R that intends to reduce cannula size and promote the mobility of the patients. Herein, in a mock setup, we combine the idea of a low flow ECCO2R and the use of adult MLs by installing a recirculation channel into the circuit and comparing the new setup to an already clinically established setup, "the Homburg lung." Furthermore, to make stronger reference to hypercapnic respiratory failure, we investigate the influence of CO2 partial pressure in blood on CO2 removal of both setups. A linear association between CO2 partial pressure in blood and CO2 removal of the ML in the physiologically relevant range was observed. To understand this linear dependence, a simplified mathematical model was proposed. Our new ECCO2R mock setup combines the idea of a low flow ECCO2R and an adult size ML. It shows a reasonable alternative to the current available low flow setups based on pediatric MLs.


Subject(s)
Respiratory Distress Syndrome , Respiratory Insufficiency , Adult , Carbon Dioxide , Child , Extracorporeal Circulation , Humans , Hypercapnia , Respiration, Artificial , Respiratory Distress Syndrome/therapy
7.
Int J Infect Dis ; 122: 178-187, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35643306

ABSTRACT

BACKGROUND: Early prognostication of COVID-19 severity will potentially improve patient care. Biomarkers, such as TNF-related apoptosis-inducing ligand (TRAIL), interferon gamma-induced protein 10 (IP-10), and C-reactive protein (CRP), might represent possible tools for point-of-care testing and severity prediction. METHODS: In this prospective cohort study, we analyzed serum levels of TRAIL, IP-10, and CRP in patients with COVID-19, compared them with control subjects, and investigated the association with disease severity. RESULTS: A total of 899 measurements were performed in 132 patients (mean age 64 years, 40.2% females). Among patients with COVID-19, TRAIL levels were lower (49.5 vs 87 pg/ml, P = 0.0142), whereas IP-10 and CRP showed higher levels (667.5 vs 127 pg/ml, P <0.001; 75.3 vs 1.6 mg/l, P <0.001) than healthy controls. TRAIL yielded an inverse correlation with length of hospital and intensive care unit (ICU) stay, Simplified Acute Physiology Score II, and National Early Warning Score, and IP-10 showed a positive correlation with disease severity. Multivariable regression revealed that obesity (adjusted odds ratio [aOR] 5.434, 95% confidence interval [CI] 1.005-29.38), CRP (aOR 1.014, 95% CI 1.002-1.027), and peak IP-10 (aOR 1.001, 95% CI 1.00-1.002) were independent predictors of in-ICU mortality. CONCLUSIONS: We demonstrated a correlation between COVID-19 severity and TRAIL, IP-10, and CRP. Multivariable regression showed a role for IP-10 in predicting unfavourable outcomes, such as in-ICU mortality. TRIAL REGISTRATION: Clinicaltrials.gov, NCT04655521.


Subject(s)
C-Reactive Protein , COVID-19 , C-Reactive Protein/metabolism , COVID-19/diagnosis , Chemokine CXCL10 , Female , Humans , Intensive Care Units , Interferon-gamma , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , TNF-Related Apoptosis-Inducing Ligand
8.
Membranes (Basel) ; 12(5)2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35629818

ABSTRACT

Extracorporeal membrane oxygenation (ECMO) has become an important therapeutic approach in the COVID-19 pandemic. The development and research in this field strongly relies on animal models; however, efforts are being made to find alternatives. In this work, we present a new mock circuit for ECMO that allows measurements of the oxygen transfer rate of a membrane lung at full ECMO blood flow. The mock utilizes a large reservoir of heparinized porcine blood to measure the oxygen transfer rate of the membrane lung in a single passage. The oxygen transfer rate is calculated from blood flow, hemoglobin value, venous saturation, and post-membrane arterial oxygen pressure. Before the next measuring sequence, the blood is regenerated to a venous condition with a sweep gas of nitrogen and carbon dioxide. The presented mock was applied to investigate the effect of a recirculation loop on the oxygen transfer rate of an ECMO setup. The recirculation loop caused a significant increase in post-membrane arterial oxygen pressure (paO2). The effect was strongest for the highest recirculation flow. This was attributed to a smaller boundary layer on gas fibers due to the increased blood velocity. However, the increase in paO2 did not translate to significant increases in the oxygen transfer rate because of the minor significance of physically dissolved oxygen for gas transfer. In conclusion, our results regarding a new ECMO mock setup demonstrate that recirculation loops can improve ECMO performance, but not enough to be clinically relevant.

9.
ASAIO J ; 68(8): 1017-1023, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35617687

ABSTRACT

Coronavirus disease 2019 (COVID-19) has drastically increased the number of patients requiring extracorporeal life support. We investigate the efficacy and safety of low-dose recombinant tissue-type plasminogen activator (rtPA) injection into exhausted oxygenators to delay exchange in critically ill COVID-19 patients on veno-venous extracorporeal membrane oxygenation (V-V ECMO). Small doses of rtPA were injected directly into the draining section of a V-V ECMO circuit. We compared transmembrane pressure gradient, pump head efficiency, membrane arterial partial oxygen pressure, and membrane arterial partial carbon dioxide pressure before and after the procedure. Bleeding was compared with a matched control group of 20 COVID-19 patients on V-V ECMO receiving standard anticoagulation. Four patients received 16 oxygenator instillations with rtPA at 5, 10, or 20 mg per dose. Administration of rtPA significantly reduced transmembrane pressure gradient (Δ pm = 54.8 ± 18.1 mmHg before vs . 38.3 ± 13.3 mmHg after, p < 0.001) in a dose-dependent manner (Pearson's R -0.63, p = 0.023), allowing to delay oxygenator exchange, thus reducing the overall number of consumed oxygenators. rtPA increased blood flow efficiency η (1.20 ± 0.28 ml/revolution before vs . 1.24 ± 0.27 ml/r, p = 0.002). Lysis did not affect membrane blood gases or systemic coagulation. Minor bleeding occurred in 2 of 4 patients (50%) receiving oxygenator lysis as well as 19 of 20 control patients (95%). Lysis of ECMO oxygenators effectively delays oxygenator exchange, if exchange is indicated by an increase in transmembrane pressure gradient. Application of lysis did not result in higher bleeding incidences compared with anticoagulated patients on V-V ECMO for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Extracorporeal Membrane Oxygenation , Oxygenators, Membrane , Tissue Plasminogen Activator , Blood Gas Analysis , Extracorporeal Membrane Oxygenation/instrumentation , Extracorporeal Membrane Oxygenation/methods , Humans , Tissue Plasminogen Activator/therapeutic use
10.
Intensive Care Med ; 48(3): 332-342, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35146534

ABSTRACT

PURPOSE: The question of whether cancer patients with severe respiratory failure benefit from veno-venous extracorporeal membrane oxygenation (vv-ECMO) remains unanswered. We, therefore, analyzed clinical characteristics and outcomes of a large cohort of cancer patients treated with vv-ECMO with the aim to identify prognostic factors. METHODS: 297 cancer patients from 19 German and Austrian hospitals who underwent vv-ECMO between 2009 and 2019 were retrospectively analyzed. A multivariable cox proportional hazards analysis for overall survival was performed. In addition, a propensity score-matched analysis and a latent class analysis were conducted. RESULTS: Patients had a median age of 56 (IQR 44-65) years and 214 (72%) were males. 159 (54%) had a solid tumor and 138 (47%) a hematologic malignancy. The 60-day overall survival rate was 26.8% (95% CI 22.1-32.4%). Low platelet count (HR 0.997, 95% CI 0.996-0.999; p = 0.0001 per 1000 platelets/µl), elevated lactate levels (HR 1.048, 95% CI 1.012-1.084; p = 0.0077), and disease status (progressive disease [HR 1.871, 95% CI 1.081-3.238; p = 0.0253], newly diagnosed [HR 1.571, 95% CI 1.044-2.364; p = 0.0304]) were independent adverse prognostic factors for overall survival. A propensity score-matched analysis with patients who did not receive ECMO treatment showed no significant survival advantage for treatment with ECMO. CONCLUSION: The overall survival of cancer patients who require vv-ECMO is poor. This study shows that the value of vv-ECMO in cancer patients with respiratory failure is still unclear and further research is needed. The risk factors identified in the present analysis may help to better select patients who may benefit from vv-ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Neoplasms , Respiratory Distress Syndrome , Respiratory Insufficiency , Adult , Aged , Extracorporeal Membrane Oxygenation/adverse effects , Humans , Male , Middle Aged , Neoplasms/complications , Neoplasms/therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy , Retrospective Studies
11.
Membranes (Basel) ; 11(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072067

ABSTRACT

Extracorporeal carbon dioxide removal (ECCO2R) is an important technique to treat critical lung diseases such as exacerbated chronic obstructive pulmonary disease (COPD) and mild or moderate acute respiratory distress syndrome (ARDS). This study applies our previously presented ECCO2R mock circuit to compare the CO2 removal capacity of circular versus parallel-plated membrane lungs at different sweep gas flow rates (0.5, 2, 4, 6 L/min) and blood flow rates (0.3 L/min, 0.9 L/min). For both designs, two low-flow polypropylene membrane lungs (Medos Hilte 1000, Quadrox-i Neonatal) and two mid-flow polymethylpentene membrane lungs (Novalung Minilung, Quadrox-iD Pediatric) were compared. While the parallel-plated Quadrox-iD Pediatric achieved the overall highest CO2 removal rates under medium and high sweep gas flow rates, the two circular membrane lungs performed relatively better at the lowest gas flow rate of 0.5 L/min. The low-flow Hilite 1000, although overall better than the Quadrox i-Neonatal, had the most significant advantage at a gas flow of 0.5 L/min. Moreover, the circular Minilung, despite being significantly less efficient than the Quadrox-iD Pediatric at medium and high sweep gas flow rates, did not show a significantly worse CO2 removal rate at a gas flow of 0.5 L/min but rather a slight advantage. We suggest that circular membrane lungs have an advantage at low sweep gas flow rates due to reduced shunting as a result of their fiber orientation. Efficiency for such low gas flow scenarios might be relevant for possible future portable ECCO2R devices.

12.
Case Rep Pulmonol ; 2021: 5546723, 2021.
Article in English | MEDLINE | ID: mdl-34123453

ABSTRACT

BACKGROUND: In 2020, a novel coronavirus caused a global pandemic with a clinical picture termed COVID-19, accounting for numerous cases of ARDS. However, there are still other infectious causes of ARDS that should be considered, especially as the majority of these pathogens are specifically treatable. Case Presentation. We present the case of a 36-year-old gentleman who was admitted to the hospital with flu-like symptoms, after completing a half-marathon one week before admission. As infection with SARS-CoV-2 was suspected based on radiologic imaging, the hypoxemic patient was immediately transferred to the ICU, where he developed ARDS. Empiric antimicrobial chemotherapy was initiated, the patient deteriorated further, therapy was changed, and the patient was transferred to a tertiary care ARDS center. As cold agglutinins were present, the hypothesis of an infection with SARS-CoV-2 was then questioned. Bronchoscopic sampling revealed Mycoplasma (M.) pneumoniae. When antimicrobial chemotherapy was adjusted, the patient recovered quickly. CONCLUSION: Usually, M. pneumoniae causes mild disease. When antimicrobial chemotherapy was adjusted, the patient recovered quickly. The case underlines the importance to adhere to established treatment guidelines, scrutinize treatment modalities, and not to forget other potential causes of severe pneumonia or ARDS.

13.
Interact Cardiovasc Thorac Surg ; 33(3): 402-408, 2021 08 18.
Article in English | MEDLINE | ID: mdl-33961051

ABSTRACT

OBJECTIVES: Patients with chronic obstructive pulmonary disease and lung emphysema may benefit from surgical or endoscopic lung volume reduction (ELVR). Previously reported outcomes of nitinol coil-based ELVR techniques have been ambiguous. The analysis was done to analyse outcomes of ELVR with nitinol coils in patients with severe pulmonary emphysema. METHODS: From September 2013 to November 2014, our centre performed a total of 41 coil implantations on 29 patients with severe emphysema. Coils were bronchoscopically placed during general anaesthesia. Twelve out of 29 patients received staged contralateral treatments up to 112 days later to avoid bilateral pneumothorax. Lung function and 6-min walking distance were assessed 1 week prior, 1 week after as well as 6-12 months after the procedure. Patients were followed up to 48 months after ELVR and overall mortality was compared to a historic cohort. RESULTS: While coil-based ELVR led to significant short-term improvement of vital capacity (VC, +0.14 ± 0.39 l, P = 0.032) and hyperinflation (Δ residual volume/total lung capacity -2.32% ± 6.24%, P = 0.022), no significant changes were observed in 6-min walking distance or forced expiratory volume in 1 s. Benefits were short-lived, with only 15.4% and 14.3% of patients showing sustained improvements in forced expiratory volume in 1 s or residual volume after 6 months. Adverse events included haemoptysis (40%) and pneumothorax (3.4%), major complications occurred in 6.9% of cases. Overall survival without lung transplant was 63.8% after 48 months following ELVR, differing insignificantly from what BODE indices of patients would have predicted as median 4-year survival (57%) at the time of ELVR treatment. CONCLUSIONS: ELVR with coils can achieve small and short-lived benefits in lung function at the cost of major complications in a highly morbid cohort. Treatment failed to improve 4-year overall survival. ELVR coils are not worthwhile the risk for most patients with severe emphysema.


Subject(s)
Emphysema , Pulmonary Emphysema , Emphysema/surgery , Forced Expiratory Volume , Humans , Pneumonectomy/adverse effects , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/surgery , Retrospective Studies
14.
J Intensive Care Med ; 36(6): 655-663, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33678052

ABSTRACT

BACKGROUND: It has been suggested that COVID-19-associated severe respiratory failure (CARDS) might differ from usual acute respiratory distress syndrome (ARDS) due to failing autoregulation of pulmonary vessels and higher shunt. We sought to investigate pulmonary hemodynamics and ventilation properties in patients with CARDS compared to patients with ARDS of pulmonary origin. METHODS: This was a retrospective analysis of prospectively collected data from consecutive adults with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 patients treated in our ICU in 04/2020 and a comparison of the data to matched controls with ARDS due to respiratory infections treated in our ICU from 01/2014 to 08/2019 for whom pulmonary artery catheter data were available. RESULTS: CARDS patients (n = 10) had ventilation characteristics similar to those of ARDS (n = 10) patients. Nevertheless, mechanical power applied by ventilation was significantly higher in CARDS patients (23.4 ± 8.9 J/min) than in ARDS (15.9 ± 4.3 J/min; P < 0.05). COVID-19 patients had similar pulmonary artery pressure but significantly lower pulmonary vascular resistance, as cardiac output was higher in CARDS vs. ARDS patients (P < 0.05). Shunt fraction and dead space were similar in CARDS compared to ARDS (P > 0.05) and were correlated with hypoxemia in both groups. The arteriovenous pCO2 difference (▵pCO2) was elevated (CARDS 5.5 ± 2.8 mmHg vs. ARDS 4.7 ± 1.1 mmHg; P > 0.05), as was the P(v-a)CO2/C(a-v)O2 ratio (CARDS mean 2.2 ± 1.5 vs. ARDS 1.7 ± 0.8; P > 0.05). CONCLUSIONS: Respiratory failure in COVID-19 patients seems to differ only slightly from ARDS regarding ventilation characteristics and pulmonary hemodynamics. Our data indicate microcirculatory dysfunction. More data need to be collected to assure these findings and gain more pathophysiological insights into COVID-19 and respiratory failure.


Subject(s)
COVID-19/complications , COVID-19/physiopathology , Cardiac Output/physiology , Respiration, Artificial , Respiratory Insufficiency/physiopathology , Vascular Resistance/physiology , Aged , Aged, 80 and over , COVID-19/therapy , Female , Humans , Male , Middle Aged , Pulmonary Artery , Respiratory Insufficiency/therapy , Respiratory Insufficiency/virology , Retrospective Studies
15.
Artif Organs ; 45(5): 495-505, 2021 May.
Article in English | MEDLINE | ID: mdl-33590542

ABSTRACT

Extracorporeal life support (ECLS) is a means to support patients with acute respiratory failure. Initially, recommendations to treat severe cases of pandemic coronavirus disease 2019 (COVID-19) with ECLS have been restrained. In the meantime, ECLS has been shown to produce similar outcomes in patients with severe COVID-19 compared to existing data on ARDS mortality. We performed an international email survey to assess how ECLS providers worldwide have previously used ECLS during the treatment of critically ill patients with COVID-19. A questionnaire with 45 questions (covering, e.g., indication, technical aspects, benefit, and reasons for treatment discontinuation), mostly multiple choice, was distributed by email to ECLS centers. The survey was approved by the European branch of the Extracorporeal Life Support Organization (ELSO); 276 ECMO professionals from 98 centers in 30 different countries on four continents reported that they employed ECMO for very severe COVID-19 cases, mostly in veno-venous configuration (87%). The most common reason to establish ECLS was isolated hypoxemic respiratory failure (50%), followed by a combination of hypoxemia and hypercapnia (39%). Only a small fraction of patients required veno-arterial cannulation due to heart failure (3%). Time on ECLS varied between less than 2 and more than 4 weeks. The main reason to discontinue ECLS treatment prior to patient's recovery was lack of clinical improvement (53%), followed by major bleeding, mostly intracranially (13%). Only 4% of respondents reported that triage situations, lack of staff or lack of oxygenators, were responsible for discontinuation of ECLS support. Most ECLS physicians (51%, IQR 30%) agreed that patients with COVID-19-induced ARDS (CARDS) benefitted from ECLS. Overall mortality of COVID-19 patients on ECLS was estimated to be about 55%. ECLS has been utilized successfully during the COVID-19 pandemic to stabilize CARDS patients in hypoxemic or hypercapnic lung failure. Age and multimorbidity limited the use of ECLS. Triage situations were rarely a concern. ECLS providers stated that patients with severe COVID-19 benefitted from ECLS.


Subject(s)
COVID-19/therapy , Extracorporeal Membrane Oxygenation , Practice Patterns, Physicians'/statistics & numerical data , Respiratory Distress Syndrome/therapy , Respiratory Insufficiency/therapy , Critical Illness , Humans , Internationality , Respiratory Distress Syndrome/virology , Respiratory Insufficiency/virology , SARS-CoV-2 , Surveys and Questionnaires
16.
Am J Transplant ; 21(4): 1586-1596, 2021 04.
Article in English | MEDLINE | ID: mdl-33084144

ABSTRACT

It is unknown if solid organ transplant recipients are at higher risk for severe COVID-19. The management of a lung transplantation (LTx) program and the therapeutic strategies to adapt the immunosuppressive regimen and antiviral measures is a major issue in the COVID-19 era, but little is known about worldwide practice. We sent out to 180 LTx centers worldwide in June 2020 a survey with 63 questions, both regarding the management of a LTx program in the COVID-19 era and the therapeutic strategies to treat COVID-19 LTx recipients. We received a total of 78 responses from 15 countries. Among participants, 81% declared a reduction of the activity and 47% restricted LTx for urgent cases only. Sixteen centers observed deaths on waiting listed patients and eight centers performed LTx for COVID-19 disease. In 62% of the centers, COVID-19 was diagnosed in LTx recipients, most of them not severe cases. The most common immunosuppressive management included a decreased dose or pausing of the cell cycle inhibitors. Remdesivir, hydroxychloroquine, and azithromycin were the most proposed antiviral strategies. Most of the centers have been affected by the COVID-19 pandemic and proposed an active therapeutic strategy to treat LTx recipients with COVID-19.


Subject(s)
COVID-19/diagnosis , Lung Transplantation , Pandemics , COVID-19/therapy , Humans , Immunosuppressive Agents/therapeutic use , Risk Factors , Transplant Recipients , Waiting Lists
18.
Crit Care ; 24(1): 664, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33239110

ABSTRACT

BACKGROUND: Effective antimicrobial treatment is key to reduce mortality associated with bacterial sepsis in patients on intensive care units (ICUs). Dose adjustments are often necessary to account for pathophysiological changes or renal replacement therapy. Extracorporeal membrane oxygenation (ECMO) is increasingly being used for the treatment of respiratory and/or cardiac failure. However, it remains unclear whether dose adjustments are necessary to avoid subtherapeutic drug levels in septic patients on ECMO support. Here, we aimed to evaluate and comparatively assess serum concentrations of continuously applied antibiotics in intensive care patients being treated with and without ECMO. METHODS: Between October 2018 and December 2019, we prospectively enrolled patients on a pneumological ICU in southwest Germany who received antibiotic treatment with piperacillin/tazobactam, ceftazidime, meropenem, or linezolid. All antibiotics were applied using continuous infusion, and therapeutic drug monitoring of serum concentrations (expressed as mg/L) was carried out using high-performance liquid chromatography. Target concentrations were defined as fourfold above the minimal inhibitory concentration (MIC) of susceptible bacterial isolates, according to EUCAST breakpoints. RESULTS: The final cohort comprised 105 ICU patients, of whom 30 were treated with ECMO. ECMO patients were significantly younger (mean age: 47.7 vs. 61.2 years; p < 0.001), required renal replacement therapy more frequently (53.3% vs. 32.0%; p = 0.048) and had an elevated ICU mortality (60.0% vs. 22.7%; p < 0.001). Data on antibiotic serum concentrations derived from 112 measurements among ECMO and 186 measurements from non-ECMO patients showed significantly lower median serum concentrations for piperacillin (32.3 vs. 52.9; p = 0.029) and standard-dose meropenem (15.0 vs. 17.8; p = 0.020) in the ECMO group. We found high rates of insufficient antibiotic serum concentrations below the pre-specified MIC target among ECMO patients (piperacillin: 48% vs. 13% in non-ECMO; linezolid: 35% vs. 15% in non-ECMO), whereas no such difference was observed for ceftazidime and meropenem. CONCLUSIONS: ECMO treatment was associated with significantly reduced serum concentrations of specific antibiotics. Future studies are needed to assess the pharmacokinetic characteristics of antibiotics in ICU patients on ECMO support.


Subject(s)
Anti-Bacterial Agents/analysis , Drug Monitoring/methods , Extracorporeal Membrane Oxygenation/statistics & numerical data , Renal Replacement Therapy/statistics & numerical data , Adult , Aged , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/blood , Ceftazidime/administration & dosage , Ceftazidime/analysis , Ceftazidime/blood , Drug Monitoring/instrumentation , Extracorporeal Membrane Oxygenation/methods , Female , Germany , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Linezolid/administration & dosage , Linezolid/analysis , Linezolid/blood , Male , Meropenem/administration & dosage , Meropenem/analysis , Meropenem/blood , Middle Aged , Piperacillin, Tazobactam Drug Combination/administration & dosage , Piperacillin, Tazobactam Drug Combination/analysis , Piperacillin, Tazobactam Drug Combination/blood , Prospective Studies , Renal Replacement Therapy/methods
19.
Intensive Care Med Exp ; 8(1): 52, 2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32915322

ABSTRACT

BACKGROUND: Extracorporeal carbon dioxide removal (ECCO2R) is a promising yet limited researched therapy for hypercapnic respiratory failure in acute respiratory distress syndrome and exacerbated chronic obstructive pulmonary disease. Herein, we describe a new mock circuit that enables experimental ECCO2R research without animal models. In a second step, we use this model to investigate three experimental scenarios of ECCO2R: (I) the influence of hemoglobin concentration on CO2 removal. (II) a potentially portable ECCO2R that uses air instead of oxygen, (III) a low-flow ECCO2R that achieves effective CO2 clearance by recirculation and acidification of the limited blood volume of a small dual lumen cannula (such as a dialysis catheter). RESULTS: With the presented ECCO2R mock, CO2 removal rates comparable to previous studies were obtained. The mock works with either fresh porcine blood or diluted expired human packed red blood cells. However, fresh porcine blood was preferred because of better handling and availability. In the second step of this work, hemoglobin concentration was identified as an important factor for CO2 removal. In the second scenario, an air-driven ECCO2R setup showed only a slightly lower CO2 wash-out than the same setup with pure oxygen as sweep gas. In the last scenario, the low-flow ECCO2R, the blood flow at the test membrane lung was successfully raised with a recirculation channel without the need to increase cannula flow. Low recirculation ratios resulted in increased efficiency, while high recirculation ratios caused slightly reduced CO2 removal rates. Acidification of the CO2 depleted blood in the recirculation channel caused an increase in CO2 removal rate. CONCLUSIONS: We demonstrate a simple and cost effective, yet powerful, "in-vitro" ECCO2R model that can be used as an alternative to animal experiments for many research scenarios. Moreover, in our approach parameters such as hemoglobin level can be modified more easily than in animal models.

SELECTION OF CITATIONS
SEARCH DETAIL
...