Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurooncol ; 37(3): 199-215, 1998 May.
Article in English | MEDLINE | ID: mdl-9524078

ABSTRACT

The effects of an intravenous (i.v.) injection of the bradykinin analog RMP-7 (100 ng/kg) were assessed in normal dogs and dogs with focal, radiation-induced brain lesions. A dose of 20 Gy was delivered to a point 0.75 cm from a removable interstitial 125I source; parameters relating to blood flow and permeability were quantified using computed tomography 2-8 weeks after irradiation. Blood flow-related endpoints included regional cerebral blood flow (rCBF), mean transit time of blood and vascular volume, while endpoints related to permeability included blood-to-brain transfer constant (Ki), brain-to-blood transfer constant and plasma volume. In unirradiated brain, an i.v. bolus of RMP-7 administered through the left cephalic vein induced a rapid and transient hypotension and a statistically significant increase in vascular volume; no alterations in any parameter related to permeability were observed. After irradiation, changes in rCBF after RMP-7 depended upon time after exposure, effects presumably due to changing morphology in the irradiated tissues. In the radiation lesions, significant increases in Ki were observed 5 minutes after injection of RMP-7, but those increases were not related to time after irradiation or alteration in blood flow-related parameters. Our results showed that RMP-7 selectively increased permeability in already damaged vasculature without affecting the extent or volume of radiation-induced vasogenic edema. These data suggest that RMP-7 may provide an effective means to enhance the delivery of compounds to an already compromised brain while not exacerbating the potential adverse effects of pre-existing vasogenic edema.


Subject(s)
Bradykinin/analogs & derivatives , Brain/drug effects , Brain/radiation effects , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/radiation effects , Animals , Blood Pressure/drug effects , Blood Pressure/radiation effects , Bradykinin/pharmacology , Brain/diagnostic imaging , Brain Edema/diagnostic imaging , Brain Edema/etiology , Dogs , Male , Radiation Injuries, Experimental , Reference Values , Tomography, X-Ray Computed
2.
Int J Radiat Oncol Biol Phys ; 36(1): 113-23, 1996 Aug 01.
Article in English | MEDLINE | ID: mdl-8823266

ABSTRACT

PURPOSE: The objective of this study was to quantify microglial and astrocytic cell responses after focal 125I irradiation of normal brain and to determine the effects of an intravenous infusion of alpha-difluoromethylornithine (DFMO) on those responses. METHODS AND MATERIALS: Adult beagle dogs were irradiated using high activity 125I sources. Saline or DFMO (75 mg/kg/day) was infused for 18 days, and 1 to 10 weeks later brain tissues were collected. Immunohistochemical stains were used to label phagocytes and amoeboid microglia (lectin RCA-1), astrocytes (GFAP), and cells synthesizing deoxyribonucleic acid (DNA) (BrdU). Cell densities (cells/mm2) and BrdU labeling indices were quantified. RESULTS: In dogs infused with saline, increases in phagocytes and amoeboid microglia were observed at 1-2 weeks and 4 weeks, respectively. The labeling indices for phagocytes and amoeboid microglia peaked at 4 weeks with maximum values of 4.8 and 13.4%, respectively. Astrocyte cell numbers increased from 2-6 weeks following irradiation; increased labeling indices were observed after 2 weeks. An infusion of DFMO significantly suppressed BrdU labeling and delayed the increase in cell numbers for phagocytes and amoeboid microglia. In both treatment groups, the proportion of total BrdU labeling accounted for by phagocytes was maximum 1 week after irradiation and then decreased. The proportion of total BrdU labeling accounted for by amoeboid microglia and astrocytes was zero for 2 weeks and then increased. CONCLUSIONS: Microglial reactions after focal irradiation involve the phagocytic and amoeboid cell forms and are characterized by increased BrdU uptake and increased cell number. DFMO significantly alters these responses. Changes in astrocyte cell number and BrdU labeling may be related to changes in microglia. Studies of cell responses and their modification may lead to a better understanding of the pathogenesis of radiation injury, and to new strategies to optimize the use of therapeutic irradiation.


Subject(s)
Astrocytes/radiation effects , Eflornithine/pharmacology , Microglia/radiation effects , Radiation Injuries, Experimental/prevention & control , Radiation-Protective Agents/pharmacology , Animals , Cell Division/drug effects , Cell Division/radiation effects , Dogs , Male , Phagocytosis/radiation effects
3.
Int J Radiat Oncol Biol Phys ; 32(4): 1035-45, 1995 Jul 15.
Article in English | MEDLINE | ID: mdl-7607924

ABSTRACT

PURPOSE: The objectives of this study were to quantitatively define proliferative and infiltrative cell responses after focal 125I irradiation of normal brain, and to determine the effects of an intravenous infusion of alpha-difluoromethylornithine (DFMO) on those responses. METHODS AND MATERIALS: Adult beagle dogs were irradiated using high activity 125I sources. Saline (control) or DFMO (150 mg/kg/day) was infused for 18 days starting 2 days before irradiation. At varying times up to 8 weeks after irradiation, brain tissues were collected and the cell responses in and around the focal lesion were quantified. Immunohistochemical stains were used to label astrocytes (GFAP), vascular endothelial cells (Factor VIII), polymorphonuclear leukocytes (PMNs; MAC 387) and cells synthesizing deoxyribonucleic acid (DNA) (BrdU). Cellular responses were quantified using a histomorphometric analysis. RESULTS: After radiation alone, cellular events included a substantial acute inflammatory response followed by increased BrdU labeling and progressive increases in numbers of capillaries and astrocytes. alpha-Difluoromethylornithine treatment significantly affected the measured cell responses. As in controls, an early inflammatory response was measured, but after 2 weeks there were more PMNs/unit area than in controls. The onset of measurable BrdU labeling was delayed in DFMO-treated animals, and the magnitude of labeling was significantly reduced. Increases in astrocyte and vessel numbers/mm2 were observed after a 2-week delay. At the site of implant, astrocytes from DFMO-treated dogs were significantly smaller than those from controls. CONCLUSIONS: There is substantial cell proliferation and infiltration in response to interstitial irradiation of normal brain, and these responses are significantly altered by DFMO treatment. Although the precise mechanisms by which DFMO exerts its effects in this model are not known, the results from this study suggest that modification of radiation injury may be possible by manipulating the response of normal cells to injury.


Subject(s)
Brachytherapy , Brain/radiation effects , Cell Division/drug effects , Eflornithine/pharmacology , Iodine Radioisotopes/therapeutic use , Radiation Injuries, Experimental/prevention & control , Analysis of Variance , Animals , Astrocytes/drug effects , Astrocytes/pathology , Astrocytes/radiation effects , Brain/drug effects , Brain/pathology , Cell Count/drug effects , Cell Count/radiation effects , Dogs , Male , Necrosis/prevention & control , Neutrophils/drug effects , Neutrophils/radiation effects
4.
Radiat Res ; 138(1): 99-106, 1994 Apr.
Article in English | MEDLINE | ID: mdl-8146307

ABSTRACT

Alpha-difluoromethylornithine (DFMO) was used to reduce 125I-induced brain injury in normal beagle dogs. Different DFMO doses and administration schedules were used to determine if the reduction in brain injury was dependent on dose and/or dependent upon when the drug was administered relative to the radiation treatment. Doses of DFMO of 75 mg/kg/day and 37.5 mg/kg/day given 2 days before, during and for 14 days after irradiation reduced levels of putrescine (PU) in the cerebrospinal fluid relative to controls. Volume of edema was significantly reduced by 75 mg/kg/day of DFMO before, during and after irradiation and by the same dose when the drug was started immediately after irradiation. A reduction in edema volume after 37.5 mg/kg/day before, during and after irradiation was very near significance. Ultrafast CT studies performed on dogs that received a DFMO dose of 75 mg/kg/day before, during and after irradiation suggested that the reduced edema volume was associated with reduced vascular permeability. Volume of necrosis and volume of contrast enhancement (breakdown of the blood-brain barrier) were significantly lower than controls only after a DFMO dose of 75 mg/kg/day before, during and after irradiation. These latter data, coupled with the findings relative to edema, suggest that different mechanisms may be involved with respect to the effects of DFMO on brain injury, or that the extents of edema, necrosis and breakdown of the blood-brain barrier may depend upon different levels of polyamine depletion. The precise mechanisms by which DFMO exerts the effects observed here need to be determined.


Subject(s)
Brain Edema/prevention & control , Brain/radiation effects , Eflornithine/pharmacology , Radiation Injuries, Experimental/prevention & control , Analysis of Variance , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/radiation effects , Brain/drug effects , Brain/metabolism , Brain Edema/diagnostic imaging , Brain Edema/etiology , Capillary Permeability/drug effects , Capillary Permeability/radiation effects , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/radiation effects , Dogs , Dose-Response Relationship, Drug , Drug Administration Schedule , Iodine Radioisotopes , Male , Putrescine/cerebrospinal fluid , Radiation Injuries, Experimental/diagnostic imaging , Time Factors , Tomography, X-Ray Computed
5.
Radiat Res ; 130(2): 236-40, 1992 May.
Article in English | MEDLINE | ID: mdl-1574580

ABSTRACT

To characterize the role of the cerebrovascular response in the development of brain injury after focal irradiation, 125I sources were implanted in frontal white matter of the brain of normal dogs; dose was 20 Gy, 7.5 mm from the source. Cerebral blood flow, vascular volume and mean transit time of blood were quantified in irradiated tissues relative to tissues in the contralateral hemisphere and analyzed with respect to previously determined volumetric measurements of damage and the blood-to-brain transfer constant. Blood flow and vascular volume within the radiation-induced focal lesion were maximally reduced 3 weeks after implant, when necrosis volume was maximal. By 6 weeks, vascular volume and mean transit time were increased, suggesting a strong neovascular response. In tissues surrounding the lesion, blood flow and vascular volume were reduced 1-4 weeks after irradiation and approached normal at 6 weeks; average mean transit time was not altered significantly. Alterations in blood flow and mean transit time were significantly related to edema volume and transfer constant, but alterations in vascular volume were not, suggesting that edema-induced vascular compression was not responsible for changes in blood flow. Reductions of radiation-induced permeability of the blood-brain barrier and/or edema might limit radiation-induced changes in blood flow and the extent of tissue injury.


Subject(s)
Brain/radiation effects , Cerebrovascular Circulation/radiation effects , Radiation Injuries, Experimental/physiopathology , Animals , Blood Volume , Brain Edema/physiopathology , Dogs , Female , Iodine Radioisotopes , Male
6.
Radiat Res ; 128(3): 306-15, 1991 Dec.
Article in English | MEDLINE | ID: mdl-1961928

ABSTRACT

The effect of alpha-difluoromethylornithine (DFMO) on 125I-induced brain injury was investigated in a dog model. Cerebrospinal putrescine levels were reduced from baseline levels 1-2 weeks after irradiation in animals treated with 125I and DFMO, while putrescine levels were elevated in 125I and saline-treated animals. In addition, the time course of changes in the volumes of edema, necrosis, and tissue showing evidence of blood-brain barrier breakdown was altered significantly by DFMO treatment. The most significant alterations occurred 2-4 weeks after irradiation, at which times the average volumes of damage in DFMO-treated animals were reduced compared to saline-treated animals. The time course of alterations in blood-to-brain transfer, brain-to-blood transfer, and vascularity following irradiation was also altered by DFMO treatment. Analysis of variance demonstrated a strong relationship of blood-to-brain transfer and vascularity to volume of edema, suggesting that the effect of DFMO on edema may be partially mediated by its effects on blood-brain barrier breakdown.


Subject(s)
Brain Edema/prevention & control , Brain/radiation effects , Eflornithine/administration & dosage , Radiation Injuries, Experimental/prevention & control , Animals , Blood-Brain Barrier/radiation effects , Brachytherapy , Brain/pathology , Brain Edema/etiology , Brain Edema/metabolism , Brain Edema/pathology , Dogs , Female , Infusions, Intravenous , Iodine Radioisotopes/administration & dosage , Male , Putrescine/metabolism , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Spermidine/metabolism
7.
Neurosurgery ; 23(5): 564-9, 1988 Nov.
Article in English | MEDLINE | ID: mdl-3059216

ABSTRACT

A helical coil 2450-MHz microwave antenna was used to induce interstitial hyperthermia in normal dog brain. The HCS-10(1)/11 antenna consisted of a miniature semirigid coaxial cable around which a fine wire coil with 10 turns per 1-cm length was wound. A single antenna and two or three temperature probes were implanted stereotactically, and the temperature distributions surrounding the antenna were measured and compared to those induced using a dipole antenna. The helical coil antenna produced well-localized temperature distributions at depths that were symmetrical around the coil and that extended to the antenna tip. There was minimal variation of the heating patterns with insertion depth using the HCS-10(1)/11 antenna and no excessive heating of extracerebral tissues. In contrast, 2450-MHz dipole antennas induced temperatures of 43 to 46 degrees C at the brain surface and extracerebral tissues (skull, muscle, and scalp), with a relatively uniform but lower temperature in the targeted brain volume. One week after hyperthermia treatment, the thermal lesions induced by the helical coil antenna were visualized using computed tomography. The heating patterns correlated well with the location of the heat lesions and were reproducible among animals. The results indicated that the helical coil antenna could be used to induce localized hyperthermia at specific depths in normal brain without inducing unacceptable heating of the brain surface or extracerebral tissues. Consequently, this antenna seems to be suitable for studying the response of normal brain after a heat insult and may be effective in the application of interstitial microwave brain hyperthermia for malignant brain tumors.


Subject(s)
Brain Diseases/therapy , Brain/physiology , Hyperthermia, Induced/instrumentation , Microwaves/therapeutic use , Animals , Dogs , Hyperthermia, Induced/methods , Microwaves/instrumentation , Stereotaxic Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...