Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Lancet Microbe ; 5(1): e72-e80, 2024 01.
Article in English | MEDLINE | ID: mdl-38185134

ABSTRACT

BACKGROUND: Low-density asymptomatic Plasmodium infections are prevalent in endemic areas, but little is known about their natural history. The trajectories of these infections and their propensity to fluctuate to undetectable densities can affect detection in clinical trials and field studies. We aimed to classify the natural history of these infections in a high transmission area over 29 days. METHODS: In this longitudinal cohort study, we enrolled healthy, malaria-asymptomatic, afebrile, adults (age 18-59 years) and older children (age 8-17 years) in Katakwi District, Uganda, who were negative for Plasmodium infection on rapid diagnostic tests. Participants were instructed to self-collect one dried blood spot (DBS) per day for a maximum of 29 days. We excluded people if they were pregnant or taking antimalarials. During weekly clinic visits, staff collected a DBS and a 4 mL sample of venous blood. We analysed DBSs by Plasmodium 18S rRNA quantitative RT-PCR (qRT-PCR). We classified DBS by infection type as negative, P falciparum, non-P falciparum, or mixed. We plotted infection type over time for each participant and categorised trajectories as negative, new, cleared, chronic, or indeterminate infections. To estimate the effect of single timepoint sampling, we calculated the daily prevalence for each study day and estimated the number of infections that would have been detected in our population if sampling frequency was reduced. FINDINGS: Between April 9 and May 20, 2021, 3577 DBSs were collected by 128 (40 male adults, 60 female adults, 12 male children, and 16 female children) study participants. 2287 (64%) DBSs were categorised as negative, 751 (21%) as positive for P falciparum, 507 (14%) as positive for non-P falciparum, and 32 (1%) as mixed infections. Daily Plasmodium prevalence in the population ranged from 45·3% (95% CI 36·6-54·1) at baseline to 30·3% (21·9-38·6) on day 24. 37 (95%) of 39 P falciparum and 35 (85%) of 41 non-P falciparum infections would have been detected with every other day sampling, whereas, with weekly sampling, 35 (90%) P falciparum infections and 31 (76%) non-P falciparum infections would have been detected. INTERPRETATION: Parasite dynamics and species are highly variable among low-density asymptomatic Plasmodium infections. Sampling every other day or every 3 days detected a similar proportion of infections as daily sampling, whereas testing once per week or even less frequently could misclassify up to a third of the infections. Even using highly sensitive diagnostics, single timepoint testing might misclassify the true infection status of an individual. FUNDING: US National Institutes of Health and Bill and Melinda Gates Foundation.


Subject(s)
Malaria, Falciparum , Malaria , Plasmodium , United States , Adult , Child , Pregnancy , Humans , Male , Female , Adolescent , Young Adult , Middle Aged , Longitudinal Studies , Uganda/epidemiology , Plasmodium falciparum/genetics , Malaria/diagnosis , Malaria/epidemiology , Plasmodium/genetics , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Cohort Studies , Asymptomatic Infections/epidemiology
2.
Malar J ; 22(1): 379, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38093306

ABSTRACT

BACKGROUND: Plasmodium knowlesi is an established experimental model for basic and pre-clinical malaria vaccine research. Historically, rhesus macaques have been the most common host for malaria vaccine studies with P. knowlesi parasites. However, rhesus are not natural hosts for P. knowlesi, and there is interest in identifying alternative hosts for vaccine research. The study team previously reported that pig-tailed macaques (PTM), a natural host for P. knowlesi, could be challenged with cryopreserved P. knowlesi sporozoites (PkSPZ), with time to blood stage infection equivalent to in rhesus. Here, additional exploratory studies were performed to evaluate PTM as potential hosts for malaria vaccine studies. The aim was to further characterize the parasitological and veterinary health outcomes after PkSPZ challenge in this macaque species. METHODS: Malaria-naïve PTM were intravenously challenged with 2.5 × 103 PkSPZ and monitored for blood stage infection by Plasmodium 18S rRNA RT-PCR and thin blood smears. Disease signs were evaluated by daily observations, complete blood counts, serum chemistry tests, and veterinary examinations. After anti-malarial drug treatment, a subset of animals was re-challenged and monitored as above. Whole blood gene expression analysis was performed on selected animals to assess host response to infection. RESULTS: In naïve animals, the kinetics of P. knowlesi blood stage replication was reproducible, with parasite burden rising linearly during an initial acute phase of infection from 6 to 11 days post-challenge, before plateauing and transitioning into a chronic low-grade infection. After re-challenge, infections were again reproducible, but with lower blood stage parasite densities. Clinical signs of disease were absent or mild and anti-malarial treatment was not needed until the pre-defined study day. Whole blood gene expression analysis identified immunological changes associated with acute and chronic phases of infection, and further differences between initial challenge versus re-challenge. CONCLUSIONS: The ability to challenge PTM with PkSPZ and achieve reliable blood stage infections indicate this model has significant potential for malaria vaccine studies. Blood stage P. knowlesi infection in PTM is characterized by low parasite burdens and a benign disease course, in contrast with the virulent P. knowlesi disease course commonly reported in rhesus macaques. These findings identify new opportunities for malaria vaccine research using this natural host-parasite combination.


Subject(s)
Antimalarials , Malaria Vaccines , Malaria , Plasmodium knowlesi , Animals , Plasmodium knowlesi/genetics , Macaca nemestrina , Macaca mulatta , Malaria/prevention & control , Malaria/veterinary , Malaria/parasitology
3.
Open Forum Infect Dis ; 10(5): ofad202, 2023 May.
Article in English | MEDLINE | ID: mdl-37265668

ABSTRACT

Background: Sensitive molecular assays, such as quantitative reverse-transcription polymerase chain reaction (qRT-PCR) of Plasmodium 18S ribosomal RNA (rRNA), are increasingly the primary method of detecting infections in controlled human malaria infection (CHMI) trials. However, thick blood smears (TBSs) remain the main method for confirming clearance of parasites after curative treatment, in part owing to uncertainty regarding biomarker clearance rates. Methods: For this analysis, 18S rRNA qRT-PCR data were compiled from 127 Plasmodium falciparum-infected participants treated with chloroquine or atovaquone-proguanil in 6 CHMI studies conducted in Seattle, Washington, over the past decade. A survival analysis approach was used to compare biomarker and TBS clearance times among studies. The effect of the parasite density at which treatment was initiated on clearance time was estimated using linear regression. Results: The median time to biomarker clearance was 3 days (interquartile range, 3-5 days), while the median time to TBS clearance was 1 day (1-2 days). Time to biomarker clearance increased with the parasite density at which treatment was initiated. Parasite density did not have a significant effect on TBS clearance. Conclusions: The Plasmodium 18S rRNA biomarker clears quickly and can be relied on to confirm the adequacy of Food and Drug Administration-approved treatments in CHMI studies at nonendemic sites.

4.
Front Immunol ; 13: 1003452, 2022.
Article in English | MEDLINE | ID: mdl-36203582

ABSTRACT

Pre-existing and intervening low-density Plasmodium infections complicate the conduct of malaria clinical trials. These infections confound infection detection endpoints, and their immunological effects may detract from intended vaccine-induced immune responses. Historically, these infections were often unrecognized since infrequent and often analytically insensitive parasitological testing was performed before and during trials. Molecular diagnostics now permits their detection, but investigators must weigh the cost, complexity, and personnel demands on the study and the laboratory when scheduling such tests. This paper discusses the effect of pre-existing and intervening, low-density Plasmodium infections on malaria vaccine trial endpoints and the current methods employed for their infection detection. We review detection techniques, that until recently, provided a dearth of cost-effective strategies for detecting low density infections. A recently deployed, field-tested, simple, and cost-effective molecular diagnostic strategy for detecting pre-existing and intervening Plasmodium infections from dried blood spots (DBS) in malaria-endemic settings is discussed to inform new clinical trial designs. Strategies that combine sensitive molecular diagnostic techniques with convenient DBS collections and cost-effective pooling strategies may enable more thorough and informative infection monitoring in upcoming malaria clinical trials and epidemiological studies.


Subject(s)
Malaria Vaccines , Malaria , Humans , Malaria/diagnosis , Malaria Vaccines/therapeutic use , Molecular Diagnostic Techniques/methods , Plasmodium falciparum/genetics
5.
NPJ Vaccines ; 7(1): 113, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36195607

ABSTRACT

Antibodies against the Plasmodium falciparum circumsporozoite protein (PfCSP) can block hepatocyte infection by sporozoites and protect against malaria. Needle-free vaccination strategies are desirable, yet most PfCSP-targeted vaccines like RTS,S require needle-based administration. Here, we evaluated the edible algae, Arthrospira platensis (commonly called 'spirulina') as a malaria vaccine platform. Spirulina were genetically engineered to express virus-like particles (VLPs) consisting of the woodchuck hepatitis B core capsid protein (WHcAg) displaying a (NANP)15 PfCSP antigen on its surface. PfCSP-spirulina administered to mice intranasally followed by oral PfCSP-spirulina boosters resulted in a strong, systemic anti-PfCSP immune response that was protective against subcutaneous challenge with PfCSP-expressing P. yoelii. Unlike male mice, female mice did not require Montanide adjuvant to reach high antibody titers or protection. The successful use of spirulina as a vaccine delivery system warrants further development of spirulina-based vaccines as a useful tool in addressing malaria and other diseases of global health importance.

6.
Sci Transl Med ; 14(659): eabn9709, 2022 08 24.
Article in English | MEDLINE | ID: mdl-36001680

ABSTRACT

Genetically engineered live Plasmodium falciparum sporozoites constitute a potential platform for creating consistently attenuated, genetically defined, whole-parasite vaccines against malaria through targeted gene deletions. Such genetically attenuated parasites (GAPs) do not require attenuation by irradiation or concomitant drug treatment. We previously developed a P. falciparum (Pf) GAP with deletions in P52, P36, and SAP1 genes (PfGAP3KO) and demonstrated its safety and immunogenicity in humans. Here, we further assessed safety, tolerability, and immunogenicity of the PfGAP3KO vaccine and tested its efficacy against controlled human malaria infection (CHMI) in malaria-naïve subjects. The vaccine was delivered by three (n = 6) or five (n = 8) immunizations with ~200 PfGAP3KO-infected mosquito bites per immunization. PfGAP3KO was safe and well tolerated with no breakthrough P. falciparum blood stage infections. Vaccine-related adverse events were predominately localized urticaria related to the numerous mosquito bites administered per vaccination. CHMI via bites with mosquitoes carrying fully infectious Pf NF54 parasites was carried out 1 month after the last immunization. Half of the study participants who received either three or five PfGAP3KO immunizations remained P. falciparum blood stage negative, as shown by a lack of detection of Plasmodium 18S rRNA in the blood for 28 days after CHMI. Six protected study participants received a second CHMI 6 months later, and one remained completely protected. Thus, the PfGAP3KO vaccine was safe and immunogenic and was capable of inducing protection against sporozoite infection. These results warrant further evaluation of PfGAP3KO vaccine efficacy in dose-range finding trials with an injectable formulation.


Subject(s)
Insect Bites and Stings , Malaria Vaccines , Malaria, Falciparum , Malaria , Parasites , Animals , Humans , Insect Bites and Stings/chemically induced , Malaria/prevention & control , Malaria, Falciparum/parasitology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/genetics , Sporozoites/genetics , Vaccines, Attenuated
7.
Malar J ; 21(1): 221, 2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35836179

ABSTRACT

BACKGROUND: Many Plasmodium infections in endemic regions exist at densities below the limit of detection of standard diagnostic tools. These infections threaten control efforts and may impact vaccine and therapeutic drug studies. Simple, cost-effective methods are needed to study the natural history of asymptomatic submicroscopic parasitaemia. Self-collected dried blood spots (DBS) analysed using pooled and individual quantitative reverse transcription polymerase chain reaction (qRT-PCR) provide such a solution. Here, the feasibility and acceptability of daily at-home DBS collections for qRT-PCR was studied to better understand low-density infections. METHODS: Rapid diagnostic test (RDT)-negative individuals in Katakwi District, northeastern Uganda, were recruited between April and May 2021. Venous blood samples and clinic-collected DBS were taken at enrollment and at four weekly clinic visits. Participants were trained in DBS collection and asked to collect six DBS weekly between clinic visits. Opinions about the collection process were solicited using daily Diary Cards and a Likert scale survey at the final study visit. Venous blood and DBS were analysed by Plasmodium 18S rRNA qRT-PCR. The number of participants completing the study, total DBS collected, and opinions of the process were analysed to determine compliance and acceptability. The human internal control mRNA and Plasmodium 18S rRNA were evaluated for at-home vs. clinic-collected DBS and venous blood to assess quality and accuracy of at-home collected samples. RESULTS: One-hundred two adults and 29 children were enrolled, and 95 and 26 completed the study, respectively. Three individuals withdrew due to pain or inconvenience of procedures. Overall, 96% of participants collected ≥ 16 of 24 at-home DBS, and 87% of DBS contained ≥ 40 µL of blood. The procedure was well tolerated and viewed favourably by participants. At-home collected DBS were acceptable for qRT-PCR and showed less than a one qRT-PCR cycle threshold shift in the human control mRNA compared to clinic-collected DBS. Correlation between Plasmodium falciparum 18S rRNA from paired whole blood and DBS was high (R = 0.93). CONCLUSIONS: At-home DBS collection is a feasible, acceptable, and robust method to obtain blood to evaluate the natural history of low-density Plasmodium infections by qRT-PCR.


Subject(s)
Malaria, Falciparum , Malaria , Adult , Child , Feasibility Studies , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum/genetics , Polymerase Chain Reaction/methods , RNA, Messenger , RNA, Ribosomal, 18S/genetics , Reverse Transcription
8.
NPJ Vaccines ; 7(1): 58, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35618791

ABSTRACT

Vaccine-induced sterilizing protection from infection by Plasmodium parasites, the pathogens that cause malaria, will be essential in the fight against malaria as it would prevent both malaria-related disease and transmission. Stopping the relatively small number of parasites injected by the mosquito before they can migrate from the skin to the liver is an attractive means to this goal. Antibody-eliciting vaccines have been used to pursue this objective by targeting the major parasite surface protein present during this stage, the circumsporozoite protein (CSP). While CSP-based vaccines have recently had encouraging success in disease reduction, this was only achieved with extremely high antibody titers and appeared less effective for a complete block of infection (i.e., sterile protection). While such disease reduction is important, these and other results indicate that strategies focusing on CSP alone may not achieve the high levels of sterile protection needed for malaria eradication. Here, we show that monoclonal antibodies (mAbs) recognizing another sporozoite protein, TRAP/SSP2, exhibit a range of inhibitory activity and that these mAbs may augment CSP-based protection despite conferring no sterile protection on their own. Therefore, pursuing a multivalent subunit vaccine immunization is a promising strategy for improving infection-blocking malaria vaccines.

9.
iScience ; 25(5): 104224, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35521513

ABSTRACT

Plasmodium sporozoites invade hepatocytes and transform into liver stages within a parasitophorous vacuole (PV). The parasites then grow and replicate their genome to form exoerythrocytic merozoites that infect red blood cells. We report that the human malaria parasite Plasmodium falciparum (Pf) expresses a C-type ATP-binding cassette transporter, Pf ABCC2, which marks the transition from invasive sporozoite to intrahepatocytic early liver stage. Using a humanized mouse infection model, we show that Pf ABCC2 localizes to the parasite plasma membrane in early and mid-liver stage parasites but is not detectable in late liver stages. Pf abcc2 - sporozoites invade hepatocytes, form a PV, and transform into liver stage trophozoites but cannot transition to exoerythrocytic schizogony and fail to transition to blood stage infection. Thus, Pf ABCC2 is an expression marker for early phases of parasite liver infection and plays an essential role in the successful initiation of liver stage replication.

10.
Am J Trop Med Hyg ; 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35405648

ABSTRACT

Molecular diagnostic tests for Plasmodium falciparum parasites are increasingly used to enable ultrasensitive detection of infection in clinical trials and field surveillance studies. Ribonucleic acid (RNA)-based assays targeting 18S rRNA are particularly sensitive with limits of detection reported to comprise a single infected red blood cell (RBC) in a relatively large volume of blood. However, the validation testing at such limiting concentrations is hampered by the so-called Poisson distribution of such rare events, which can lead laboratorians to inaccurately set the limit of detection higher (i.e., less sensitive) than the assay can actually detect. Here we set out to formally demonstrate the analytical sensitivity of the Plasmodium 18S rRNA quantitative reverse transcription PCR (qRT-PCR). Fluorescence-activated cell sorting (FACS) was used on synchronous P. falciparum cultures doubly stained for DNA and RNA and was followed by qRT-PCR on the individual sorted cells spiked with negative whole blood. Over 95% of individual single-ring infected RBCs were detected by qRT-PCR. The formally measured median 18S rRNA content per individual ring-stage P. falciparum parasite was 9,550 copies (interquartile range 8,130-12,300). Thus, one can confidently rely on Plasmodium 18S rRNA qRT-PCR to detect one parasite per 50-µL blood sample.

11.
Malar J ; 20(1): 391, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34620192

ABSTRACT

BACKGROUND: Plasmodium 18S rRNA is a sensitive biomarker for detecting Plasmodium infection in human blood. Dried blood spots (DBS) are a practical sample type for malaria field studies to collect, store, and transport large quantities of blood samples for diagnostic testing. Pooled testing is a common way to reduce reagent costs and labour. This study examined performance of the Plasmodium 18S rRNA biomarker assay for DBS, improved assay sensitivity for pooled samples, and created graphical user interface (GUI) programmes for facilitating optimal pooling. METHODS: DBS samples of varied parasite densities from clinical specimens, Plasmodium falciparum in vitro culture, and P. falciparum Armored RNA® were tested using the Plasmodium 18S rRNA quantitative triplex reverse transcription polymerase chain reaction (qRT-PCR) assay and a simplified duplex assay. DBS sample precision, linearity, limit of detection (LoD) and stability at varied storage temperatures were evaluated. Novel GUIs were created to model two-stage hierarchy, square matrix, and three-stage hierarchy pooling strategies with samples of varying positivity rates and estimated test counts. Seventy-eight DBS samples from persons residing in endemic regions with sub-patent infections were tested in pools and deconvoluted to identify positive cases. RESULTS: Assay performance showed linearity for DBS from 4 × 107 to 5 × 102 parasites/mL with strong correlation to liquid blood samples (r2 > 0.96). There was a minor quantitative reduction in DBS rRNA copies/mL compared to liquid blood samples. Analytical sensitivity for DBS was estimated 5.3 log copies 18S rRNA/mL blood (28 estimated parasites/mL). Properly preserved DBS demonstrated minimal degradation of 18S rRNA when stored at ambient temperatures for one month. A simplified duplex qRT-PCR assay omitting the human mRNA target showed improved analytical sensitivity, 1 parasite/mL blood, and was optimized for pooling. Optimal pooling sizes varied depending on prevalence. A pilot DBS study of the two-stage hierarchy pooling scheme corroborated results previously determined by testing individual DBS. CONCLUSIONS: The Plasmodium 18S rRNA biomarker assay can be applied to DBS collected in field studies. The simplified Plasmodium qRT-PCR assay and GUIs have been established to provide efficient means to test large quantities of DBS samples.


Subject(s)
Dried Blood Spot Testing/methods , Malaria/diagnosis , Plasmodium falciparum/genetics , RNA, Ribosomal, 18S/blood , Biomarkers/blood , Humans , Malaria/epidemiology , Real-Time Polymerase Chain Reaction , Specimen Handling/methods
12.
Malar J ; 20(1): 313, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34247643

ABSTRACT

BACKGROUND: Prevalence of falciparum malaria on Bioko Island remains high despite sustained, intensive control. Progress may be hindered by high proportions of subpatent infections that are not detected by rapid diagnostic tests (RDT) but contribute to onward transmission, and by imported infections. Better understanding of the relationship between subpatent infections and RDT-detected infections, and whether this relationship is different from imported versus locally acquired infections, is imperative to better understand the sources of infection and mechanisms of transmission to tailor more effective interventions. METHODS: Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) was performed on a sub-set of samples from the 2015 Malaria Indicator Survey to identify subpatent infections. Households with RDT(+) individuals were matched 1:4 with households with no RDT(+) individuals. The association between living in a household with an RDT(+) individual and having a subpatent infection was evaluated using multivariate hierarchical logistic regression models with inverse probability weights for selection. To evaluate possible modification of the association by potential importation of the RDT(+) case, the analysis was repeated among strata of matched sets based on the reported eight-week travel history of the RDT(+) individual(s). RESULTS: There were 142 subpatent infections detected in 1,400 individuals (10.0%). The prevalence of subpatent infections was higher in households with versus without an RDT(+) individual (15.0 vs 9.1%). The adjusted prevalence odds of subpatent infection were 2.59-fold greater (95% CI: 1.31, 5.09) for those in a household with an RDT(+) individual compared to individuals in a household without RDT(+) individuals. When stratifying by travel history of the RDT(+) individual, the association between subpatent infections and RDT(+) infections was stronger in the strata in which the RDT(+) individual(s) had not recently travelled (adjusted prevalence odds ratio (aPOR) 2.95; 95% CI:1.17, 7.41), and attenuated in the strata in which recent travel was reported (aPOR 1.76; 95% CI: 0.54, 5.67). CONCLUSIONS: There is clustering of subpatent infections around RDT(+) individual(s) when both imported and local infection are suspected. Future control strategies that aim to treat whole households in which an RDT(+) individual is found may target a substantial portion of infections that would otherwise not be detected.


Subject(s)
Family Characteristics , Malaria, Falciparum/epidemiology , Travel , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Diagnostic Tests, Routine , Equatorial Guinea/epidemiology , Female , Humans , Infant , Infant, Newborn , Malaria, Falciparum/diagnosis , Male , Middle Aged , Prevalence , Young Adult
13.
Clin Infect Dis ; 73(7): e2407-e2414, 2021 10 05.
Article in English | MEDLINE | ID: mdl-32644127

ABSTRACT

BACKGROUND: KAF156 is a novel antimalarial drug that is active against both liver- and blood-stage Plasmodium parasites, including drug-resistant strains. Here, we investigated the causal prophylactic efficacy of KAF156 in a controlled human malaria infection (CHMI) model. METHODS: In part 1, healthy, malaria-naive participants received 800 mg KAF156 or placebo 3 hours before CHMI with P. falciparum-infected mosquitoes. In part 2, KAF156 was administered as single doses of 800, 300, 100, 50, or 20 mg 21 hours post-CHMI. All participants received atovaquone/proguanil treatment if blood-stage infection was detected or on day 29. For each cohort, 7-14 subjects were enrolled to KAF156 treatment and up to 4 subjects to placebo. RESULTS: KAF156 at all dose levels was safe and well tolerated. Two serious adverse events were reported-both resolved without sequelae and neither was considered related to KAF156. In part 1, all participants treated with KAF156 and none of those randomized to placebo were protected against malaria infection. In part 2, all participants treated with placebo or 20 mg KAF156 developed malaria infection. In contrast, 50 mg KAF156 protected 3 of 14 participants from infection, and doses of 800, 300, and 100 mg KAF156 protected all subjects against infection. An exposure-response analysis suggested that a 24-hour postdose concentration of KAF156 of 21.5 ng/mL (90% confidence interval, 17.66-25.32 ng/mL) would ensure a 95% chance of protection from malaria parasite infection. CONCLUSIONS: KAF156 was safe and well tolerated and demonstrated high levels of pre- and post-CHMI protective efficacy. CLINICAL TRIALS REGISTRATION: NCT04072302.


Subject(s)
Antimalarials , Malaria, Falciparum , Animals , Antimalarials/therapeutic use , Humans , Imidazoles/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Piperazines , Plasmodium falciparum
14.
Malar J ; 19(1): 313, 2020 Aug 31.
Article in English | MEDLINE | ID: mdl-32867784

ABSTRACT

BACKGROUND: Rhesus macaques are valuable pre-clinical models for malaria vaccine development. The Plasmodium knowlesi/rhesus and Plasmodium falciparum/rhesus models are two established platforms for malaria vaccine testing, and both have previously been used to assess live-attenuated sporozoite vaccines. However, there is evidence that the susceptibility of the rhesus liver to P. knowlesi versus P. falciparum sporozoites likely differs, potentially complicating comparisons between these two platforms. METHODS: To quantify the differing susceptibility of rhesus to P. knowlesi and P. falciparum sporozoites, animals were infected by direct venous inoculation of purified, cryopreserved wild-type P. knowlesi sporozoites (PkSPZ) or P. falciparum sporozoites (PfSPZ). The entire liver was collected 5 days post-infection, and parasite burden in each liver lobe was quantified using an ultrasensitive Plasmodium 18S rRNA RT-PCR biomarker assay. The potential of using 18S rRNA copy number in the rhesus liver to directly measure the efficacy of vaccines targeting P. falciparum sporozoites and liver stages was also theoretically evaluated. RESULTS: Infection of rhesus with a high dose of PkSPZ led to consistently high burden liver stage infections (range 9.5-10.1 log10 copies 18S rRNA/g of liver), with similar amounts of parasite 18S rRNA detected in every liver lobe. Inoculation of rhesus with high doses of PfSPZ led to more variable, lower liver burdens (range 4.9-6.6 log10 copies 18S rRNA/g of liver in infected lobes), with parasite 18S rRNA below the limit of detection in some liver lobes. The low signal and heterogeneity of liver burden in the PfSPZ-infected animals indicates that even this extremely sensitive molecular assay cannot be used to assess reliably vaccine efficacy in the P. falciparum/rhesus platform. CONCLUSIONS: Detection of 18S rRNA in the liver following high dose intravenous PfSPZ confirmed that rhesus are modestly susceptible to wild-type P. falciparum sporozoites. However, comparison of 18S rRNA RT-PCR biomarker signal indicates that the P. falciparum liver burden was 3-5 logs lower than in PkSPZ-infected animals. Quantification of this difference in liver stage burden will help guide and interpret data from pre-clinical studies of live-attenuated sporozoite vaccines in rhesus models.


Subject(s)
Macaca mulatta/immunology , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Plasmodium knowlesi/immunology , Sporozoites/immunology , Animals , Female , Liver/parasitology , Macaca mulatta/parasitology , Male , RNA, Protozoan/metabolism , RNA, Ribosomal, 18S/metabolism , Vaccines, Attenuated/immunology
15.
Am J Trop Med Hyg ; 100(6): 1466-1476, 2019 06.
Article in English | MEDLINE | ID: mdl-31017084

ABSTRACT

18S rRNA is a biomarker that provides an alternative to thick blood smears in controlled human malaria infection (CHMI) trials. We reviewed data from CHMI trials at non-endemic sites that used blood smears and Plasmodium 18S rRNA/rDNA biomarker nucleic acid tests (NATs) for time to positivity. We validated a multiplex quantitative reverse transcription-polymerase chain reaction (qRT-PCR) for Plasmodium 18S rRNA, prospectively compared blood smears and qRT-PCR for three trials, and modeled treatment effects at different biomarker-defined parasite densities to assess the impact on infection detection, symptom reduction, and measured intervention efficacy. Literature review demonstrated accelerated NAT-based infection detection compared with blood smears (mean acceleration: 3.2-3.6 days). For prospectively tested trials, the validated Plasmodium 18S rRNA qRT-PCR positivity was earlier (7.6 days; 95% CI: 7.1-8.1 days) than blood smears (11.0 days; 95% CI: 10.3-11.8 days) and significantly preceded the onset of grade 2 malaria-related symptoms (12.2 days; 95% CI: 10.6-13.3 days). Discrepant analysis showed that the risk of a blood smear-positive, biomarker-negative result was negligible. Data modeling predicted that treatment triggered by specific biomarker-defined thresholds can differentiate complete, partial, and non-protective outcomes and eliminate many grade 2 and most grade 3 malaria-related symptoms post-CHMI. Plasmodium 18S rRNA is a sensitive and specific biomarker that can justifiably replace blood smears for infection detection in CHMI trials in non-endemic settings. This study led to biomarker qualification through the U.S. Food and Drug Administration for use in CHMI studies at non-endemic sites, which will facilitate biomarker use for the qualified context of use in drug and vaccine trials.


Subject(s)
Malaria/diagnosis , Plasmodium/genetics , RNA, Protozoan/genetics , RNA, Ribosomal, 18S/blood , Biomarkers/blood , Humans , Multiplex Polymerase Chain Reaction , Plasmodium/isolation & purification , RNA, Ribosomal, 18S/genetics , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction
16.
Am J Trop Med Hyg ; 100(5): 1202-1203, 2019 05.
Article in English | MEDLINE | ID: mdl-30915959

ABSTRACT

Low-density malaria infections are a source of human morbidity in endemic settings and potentially contribute to ongoing malaria transmission. Conventional rapid diagnostic tests (RDTs) were designed to detect clinically relevant parasite and antigen levels, but it is largely unknown what proportion of parasite (and antigen positive) infections are missed by conventional RDTs. Furthermore, RDTs can also provide false positives from lingering histidine-rich protein 2 (HRP2) antigenemia from a past infection. We analyzed 207 samples from Angolan outpatients with a bead-based HRP2 antigen assay and by qRT-PCR for the presence of parasite nucleic acids. Among patients HRP2 positive but negative by conventional RDT, the rate of quantitative reverse transcription-PCR (qRT-PCR) positivity was 45% (95% CI: 35-56%), with a median parasitemia of 3.4 parasites/µL (interquartile range: 0.14-4.8). Only 15% (7-26%) of HRP2-negative samples were found to have parasite nucleic acids. A substantial proportion of persons with blood HRP2 antigen concentrations not detected by the conventional RDT were found to have evidence of active infection, but at low parasite density levels.


Subject(s)
Antigens, Protozoan/analysis , Diagnostic Tests, Routine/statistics & numerical data , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Protozoan Proteins/analysis , Humans , Parasitemia/diagnosis , Plasmodium falciparum/genetics , Sensitivity and Specificity
17.
J Infect Dis ; 219(3): 437-447, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30202972

ABSTRACT

Background: Detection of Plasmodium antigens provides evidence of malaria infection status and is the basis for most malaria diagnosis. Methods: We developed a sensitive bead-based multiplex assay for laboratory use, which simultaneously detects pan-Plasmodium aldolase (pAldo), pan-Plasmodium lactate dehydrogenase (pLDH), and P. falciparum histidine-rich protein 2 (PfHRP2) antigens. The assay was validated against purified recombinant antigens, monospecies malaria infections, and noninfected blood samples. To test against samples collected in an endemic setting, Angolan outpatient samples (n = 1267) were assayed. Results: Of 466 Angolan samples positive for at least 1 antigen, the most common antigen profiles were PfHRP2+/pAldo+/pLDH+ (167, 36%), PfHRP2+/pAldo-/pLDH- (163, 35%), and PfHRP2+/pAldo+/pLDH- (129, 28%). Antigen profile was predictive of polymerase chain reaction (PCR) positivity and parasite density. Eight Angolan samples (1.7%) had no or very low PfHRP2 but were positive for 1 or both of the other antigens. PCR analysis confirmed 3 (0.6%) were P. ovale infections and 2 (0.4%) represented P. falciparum parasites lacking Pfhrp2 and/or Pfhrp3. Conclusions: These are the first reports of Pfhrp2/3 deletion mutants in Angola. High-throughput multiplex antigen detection can inexpensively screen for low-density P. falciparum, non-falciparum, and Pfhrp2/3-deleted parasites to provide population-level antigen estimates and identify specimens requiring further molecular characterization.


Subject(s)
Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Immunologic Tests , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Adolescent , Adult , Angola , Antigens, Protozoan/blood , Child , Child, Preschool , Fructose-Bisphosphate Aldolase/immunology , Gene Deletion , Humans , Infant , L-Lactate Dehydrogenase/immunology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Middle Aged , Polymerase Chain Reaction , Protozoan Proteins/blood , Recombinant Proteins , Young Adult
18.
J Clin Microbiol ; 57(1)2019 01.
Article in English | MEDLINE | ID: mdl-30404944

ABSTRACT

Malaria rapid diagnostic tests (RDTs) primarily detect Plasmodium falciparum antigen histidine-rich protein 2 (HRP2) and the malaria-conserved antigen lactate dehydrogenase (LDH) for P. vivax and other malaria species. The performance of RDTs and their utility is dependent on circulating antigen concentration distributions in infected individuals in a population in which malaria is endemic and on the limit of detection of the RDT for the antigens. A multiplexed immunoassay for the quantification of HRP2, P. vivax LDH, and all-malaria LDH (pan LDH) was developed to accurately measure circulating antigen concentration and antigen distribution in a population with endemic malaria. The assay also measures C-reactive protein (CRP) levels as an indicator of inflammation. Validation was conducted with clinical specimens from 397 asymptomatic donors from Myanmar and Uganda, confirmed by PCR for infection, and from participants in induced blood-stage malaria challenge studies. The assay lower limits of detection for HRP2, pan LDH, P. vivax LDH, and CRP were 0.2 pg/ml, 9.3 pg/ml, 1.5 pg/ml, and 26.6 ng/ml, respectively. At thresholds for HRP2, pan LDH, and P. vivax LDH of 2.3 pg/ml, 47.8 pg/ml, and 75.1 pg/ml, respectively, and a specificity ≥98.5%, the sensitivities for ultrasensitive PCR-confirmed infections were 93.4%, 84.9%, and 48.9%, respectively. Plasmodium LDH (pLDH) concentration, in contrast to that of HRP2, correlated closely with parasite density. CRP levels were moderately higher in P. falciparum infections with confirmed antigenemia versus those in clinical specimens with no antigen. The 4-plex array is a sensitive tool for quantifying diagnostic antigens in malaria infections and supporting the evaluation of new ultrasensitive RDTs.


Subject(s)
Antigens, Protozoan/blood , Asymptomatic Infections , C-Reactive Protein/analysis , Immunoassay/methods , Malaria/blood , Malaria/diagnosis , Adult , Asymptomatic Infections/epidemiology , Child , Child, Preschool , Diagnostic Tests, Routine , Endemic Diseases , Humans , Infant , L-Lactate Dehydrogenase/blood , Malaria/epidemiology , Myanmar/epidemiology , Plasmodium/immunology , Protozoan Proteins/blood , Sensitivity and Specificity , Uganda/epidemiology
19.
Malar J ; 17(1): 275, 2018 Jul 27.
Article in English | MEDLINE | ID: mdl-30053881

ABSTRACT

BACKGROUND: Plasmodium 18S rRNA is a biomarker used to monitor blood-stage infections in malaria clinical trials. Plasmodium sporozoites also express this biomarker, and there is conflicting evidence about how long sporozoite-derived 18S rRNA persists in peripheral blood. If present in blood for an extended timeframe, sporozoite-derived 18S rRNA could complicate use as a blood-stage biomarker. METHODS: Blood samples from Plasmodium yoelii infected mice were tested for Plasmodium 18S rRNA and their coding genes (rDNA) using sensitive quantitative reverse transcription PCR and quantitative PCR assays, respectively. Blood and tissues from Plasmodium falciparum sporozoite (PfSPZ)-infected rhesus macaques were similarly tested. RESULTS: In mice, when P. yoelii sporozoite inoculation and blood collection were performed at the same site (tail vein), low level rDNA positivity persisted for 2 days post-infection. Compared to intact parasites with high rRNA-to-rDNA ratios, this low level positivity was accompanied by no increase in rRNA-to-rDNA, indicating detection of residual, non-viable parasite rDNA. When P. yoelii sporozoites were administered via the retro-orbital vein and blood sampled by cardiac puncture, neither P. yoelii 18S rRNA nor rDNA were detected 24 h post-infection. Similarly, there was no P. falciparum 18S rRNA detected in blood of rhesus macaques 3 days after intravenous injection with extremely high doses of PfSPZ. Plasmodium 18S rRNA in the rhesus livers increased by approximately 101-fold from 3 to 6 days post infection, indicating liver-stage proliferation. CONCLUSIONS: Beyond the first few hours after injection, sporozoite-derived Plasmodium 18S rRNA was not detected in peripheral blood. Diagnostics based on 18S rRNA are unlikely to be confounded by sporozoite inocula in human clinical trials.


Subject(s)
Plasmodium yoelii/physiology , RNA, Protozoan/analysis , RNA, Ribosomal, 18S/analysis , Administration, Intravenous , Animals , Female , Macaca mulatta , Mice , Mice, Inbred BALB C , Sporozoites/chemistry
20.
Malar J ; 17(1): 23, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321025

ABSTRACT

BACKGROUND: Autosplenectomy, as a result of sickle cell disease, is an important risk factor for severe malaria. While molecular methods are helpful in providing rapid and accurate infection detection and species identification, the effect of hyposplenism on result interpretation during the course of infection should be carefully considered. CASE PRESENTATION: A 32-year old autosplenectomized Nigerian male with severe sickle cell disease was referred to the National Institutes of Health for allogenic hematopoietic stem cell transplant. Despite testing negative for malaria by both smear and PCR 2 weeks after arrival in the USA, the patient developed fever and diffuse bilateral lower rib cage and upper abdominal pain 2 weeks later and subsequently tested positive for Plasmodium falciparum. Parasitaemia was tracked over time by microscopy and nucleic acid tests to evaluate the therapeutic response in the setting of hyposplenism. The patient showed prompt resolution of patent infection by microscopy but remained positive by molecular methods for > 30 days after treatment initiation. CONCLUSION: While molecular testing can provide sensitive Plasmodium nucleic acid detection, the persistence of Plasmodium nucleic acids following adequate treatment in functionally asplenic patients can lead to a diagnostic dilemma. In such patients, clinical response and peripheral blood smears should guide patient management following treatment. Nonetheless, in pre-transplant patients at high-risk for pre-existing Plasmodium infections, highly sensitive molecular assays can be useful to rule out infection prior to transplantation.


Subject(s)
Anemia, Sickle Cell/complications , Antimalarials/therapeutic use , DNA, Protozoan/blood , Drug Monitoring/methods , Malaria, Falciparum/diagnosis , Malaria, Falciparum/pathology , Adult , Humans , Malaria, Falciparum/drug therapy , Male , Microscopy , Nucleic Acids , Polymerase Chain Reaction , Time Factors , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...