Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(1): 211-216, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30559202

ABSTRACT

Bone marrow (BM) produces all blood and immune cells deriving from hematopoietic stem cells (HSCs). The decrease of immune cell production during aging is one of the features of immunosenescence. The impact of redox dysregulation in BM aging is still poorly understood. Here we use TP53INP1-deficient (KO) mice endowed with chronic oxidative stress to assess the influence of aging-associated redox alterations in BM homeostasis. We show that TP53INP1 deletion has no impact on aging-related accumulation of HSCs. In contrast, the aging-related contraction of the lymphoid compartment is mitigated in TP53INP1 KO mice. B cells that accumulate in old KO BM are differentiating cells that can mature into functional B cells. Importantly, this phenotype results from B cell-intrinsic events associated with defective redox control. Finally, we show that oxidative stress in aged TP53INP1-deficient mice maintains STAT5 expression and activation in early B cells, driving high Pax5 expression, which provides a molecular mechanism for maintenance of B cell development upon aging.


Subject(s)
B-Lymphocytes/physiology , Bone Marrow/physiology , Lymphopoiesis , Nuclear Proteins/deficiency , Receptors, Interleukin-7/metabolism , STAT5 Transcription Factor/metabolism , Signal Transduction , Aging/physiology , Animals , B-Lymphocytes/metabolism , Bone Marrow/metabolism , Lymphopoiesis/physiology , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Oxidative Stress
2.
Biochimie ; 118: 44-50, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26225460

ABSTRACT

In the recent years, we have provided evidence that Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) is a key stress protein with antioxidant-associated tumor suppressive function. The TP53INP1 gene, which is highly conserved in mammals, is over-expressed during stress responses including inflammation. This gene encodes two protein isoforms with nuclear or cytoplasmic subcellular localization depending on the context. TP53INP1 contributes to stress responses, thus preventing stress-induced dysfunctions leading to pathologies such as cancer. Two major mechanisms by which TP53INP1 functions have been unveiled. First, in the nucleus, TP53INP1 was shown to regulate the transcriptional activity of p53 and p73 by direct interaction, and to mediate the antioxidant activity of p53. Second, independently of p53, TP53INP1 contributes to autophagy and more particularly mitophagy through direct interaction with molecular actors of autophagy. TP53INP1 is thus required for the homeostasis of the mitochondrial compartment, and is therefore involved in the regulation of energetic metabolism. Finally, the antioxidant function of TP53INP1 stems from the control of mitochondrial reactive oxygen species production. In conclusion, TP53INP1 is a multifaceted protein endowed with multiple functions, including metabolic regulation, as is its main functional partner p53.


Subject(s)
Carrier Proteins/metabolism , Energy Metabolism/physiology , Heat-Shock Proteins/metabolism , Homeostasis/physiology , Neoplasms/metabolism , Tumor Suppressor Proteins/metabolism , Gene Expression Regulation , Humans , Mitochondria/metabolism , Mitophagy/physiology , Oxidation-Reduction , Oxidative Stress/physiology
3.
EMBO Mol Med ; 7(6): 802-18, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25828351

ABSTRACT

The metabolic syndrome covers metabolic abnormalities including obesity and type 2 diabetes (T2D). T2D is characterized by insulin resistance resulting from both environmental and genetic factors. A genome-wide association study (GWAS) published in 2010 identified TP53INP1 as a new T2D susceptibility locus, but a pathological mechanism was not identified. In this work, we show that mice lacking TP53INP1 are prone to redox-driven obesity and insulin resistance. Furthermore, we demonstrate that the reactive oxygen species increase in TP53INP1-deficient cells results from accumulation of defective mitochondria associated with impaired PINK/PARKIN mitophagy. This chronic oxidative stress also favors accumulation of lipid droplets. Taken together, our data provide evidence that the GWAS-identified TP53INP1 gene prevents metabolic syndrome, through a mechanism involving prevention of oxidative stress by mitochondrial homeostasis regulation. In conclusion, this study highlights TP53INP1 as a molecular regulator of redox-driven metabolic syndrome and provides a new preclinical mouse model for metabolic syndrome clinical research.


Subject(s)
Metabolic Syndrome/physiopathology , Mitophagy , Nuclear Proteins/metabolism , Animals , Disease Models, Animal , Insulin Resistance , Mice , Nuclear Proteins/deficiency , Obesity , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/analysis
4.
Results Immunol ; 3: 51-6, 2013.
Article in English | MEDLINE | ID: mdl-24600558

ABSTRACT

Tumor Protein 53-Induced Nuclear Protein 1 (TP53INP1) plays an important role during cell stress response in synergy with the potent "genome-keeper" p53. In human, the gene encoding TP53INP1 is expressed at very high level in some pathological situations, such as inflammation and prostate cancer (PC). TP53INP1 overexpression in PC seems to be a worse prognostic factor, particularly predictive of biological cancer relapse, making TP53INP1 a relevant specific target for molecular therapy of Castration Resistant (CR) PC. In that context, detection of TP53INP1 in patient biological fluids is a promising diagnostic avenue. We report here successful development of a new Enzyme-Linked Immunosorbent Assay (ELISA) detecting TP53INP1, taking advantage of molecular tools (monoclonal antibodies (mAbs) and recombinant proteins) generated in the laboratory during the course of basic functional investigations devoted to TP53INP1. The ELISA principle is based on a sandwich immunoenzymatic system, TP53INP1 protein being trapped by a first specific mAb coated on microplate then recognized by a second specific mAb. This new assay allows specific detection of TP53INP1 in serum of several PC patients. This breakthrough paves the way towards investigation of a large cohort of patients and assessment of clinical applications of TP53INP1 dosage.

5.
Antioxid Redox Signal ; 15(6): 1639-53, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21235351

ABSTRACT

The p53-transcriptional target TP53INP1 is a potent stress-response protein promoting p53 activity. We previously showed that ectopic overexpression of TP53INP1 facilitates cell cycle arrest as well as cell death. Here we report a study investigating cell death in mice deficient for TP53INP1. Surprisingly, we found enhanced stress-induced apoptosis in TP53INP1-deficient cells. This observation is underpinned in different cell types in vivo (thymocytes) and in vitro (thymocytes and MEFs), following different types of injury inducing either p53-dependent or -independent cell death. Nevertheless, absence of TP53INP1 is unable to overcome impaired cell death of p53-deficient thymocytes. Stress-induced ROS production is enhanced in the absence of TP53INP1, and antioxidant NAC complementation abolishes increased sensitivity to apoptosis of TP53INP1-deficient cells. Furthermore, antioxidant defenses are defective in TP53INP1-deficient mice in correlation with ROS dysregulation. Finally, we show that autophagy is reduced in TP53INP1-deficient cells both at the basal level and upon stress. Altogether, these data show that impaired ROS regulation in TP53INP1-deficient cells is responsible for their sensitivity to induced apoptosis. In addition, they suggest that this sensitivity could rely on a defect of autophagy. Therefore, these data emphasize the role of TP53INP1 in protection against cell injury.


Subject(s)
Apoptosis , Fibroblasts/physiology , Nuclear Proteins/metabolism , Reactive Oxygen Species/metabolism , Thymus Gland/cytology , 2,6-Dichloroindophenol/pharmacology , Animals , Cell Cycle , Cells, Cultured , Fibroblasts/cytology , Gene Expression , Glutathione/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Nuclear Proteins/genetics , Oxidation-Reduction , Oxidative Stress/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...