Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1869(3): 119165, 2022 03.
Article in English | MEDLINE | ID: mdl-34699872

ABSTRACT

Besides its involvement in blood and bone physiology, the kidney's main function is to filter substances and thereby regulate the electrolyte composition of body fluids, acid-base balance and toxin removal. Depending on underlying conditions, the nephron must undergo remodeling and cellular adaptations. The proteolytic removal of cell surface proteins via ectodomain shedding by A Disintegrin and Metalloproteases (ADAMs) is of importance for the regulation of cell-cell and cell-matrix adhesion of renal cells. ADAM10 controls glomerular and tubule development in a Notch1 signaling-dependent manner and regulates brush border composition. ADAM17 regulates the renin angiotensin system and is together with ADAM10 involved in calcium phosphate homeostasis. In kidney disease ADAMs, especially ADAM17 contribute to inflammation through their involvement in IL-6 trans-signaling, Notch-, epithelial growth factor receptor-, and tumor necrosis factor α signaling. ADAMs are interesting drug targets to reduce the inflammatory burden, defective cell adhesion and impaired signaling pathways in kidney diseases.


Subject(s)
ADAM Proteins/metabolism , Kidney Diseases/pathology , Kidney/physiopathology , Membrane Proteins/metabolism , Proteolysis , ADAM Proteins/genetics , Animals , Humans , Kidney/enzymology , Kidney Diseases/enzymology
2.
J Am Soc Nephrol ; 32(6): 1389-1408, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33785583

ABSTRACT

BACKGROUND: Podocytes embrace the glomerular capillaries with foot processes, which are interconnected by a specialized adherens junction to ultimately form the filtration barrier. Altered adhesion and loss are common features of podocyte injury, which could be mediated by shedding of cell-adhesion molecules through the regulated activity of cell surface-expressed proteases. A Disintegrin and Metalloproteinase 10 (ADAM10) is such a protease known to mediate ectodomain shedding of adhesion molecules, among others. Here we evaluate the involvement of ADAM10 in the process of antibody-induced podocyte injury. METHODS: Membrane proteomics, immunoblotting, high-resolution microscopy, and immunogold electron microscopy were used to analyze human and murine podocyte ADAM10 expression in health and kidney injury. The functionality of ADAM10 ectodomain shedding for podocyte development and injury was analyzed, in vitro and in vivo, in the anti-podocyte nephritis (APN) model in podocyte-specific, ADAM10-deficient mice. RESULTS: ADAM10 is selectively localized at foot processes of murine podocytes and its expression is dispensable for podocyte development. Podocyte ADAM10 expression is induced in the setting of antibody-mediated injury in humans and mice. Podocyte ADAM10 deficiency attenuates the clinical course of APN and preserves the morphologic integrity of podocytes, despite subepithelial immune-deposit formation. Functionally, ADAM10-related ectodomain shedding results in cleavage of the cell-adhesion proteins N- and P-cadherin, thus decreasing their injury-related surface levels. This favors podocyte loss and the activation of downstream signaling events through the Wnt signaling pathway in an ADAM10-dependent manner. CONCLUSIONS: ADAM10-mediated ectodomain shedding of injury-related cadherins drives podocyte injury.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Membrane Proteins/metabolism , Nephritis/metabolism , Nephrotic Syndrome/metabolism , Podocytes/metabolism , Podocytes/pathology , Renal Insufficiency, Chronic/metabolism , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Animals , Autoantibodies/adverse effects , Blood Urea Nitrogen , Cadherins/metabolism , Cell Adhesion , Cell Communication , Cell Membrane/metabolism , Cells, Cultured , Creatinine/urine , Disease Models, Animal , Female , Glomerular Filtration Barrier/pathology , Glomerular Filtration Barrier/physiopathology , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Nephritis/pathology , Nephrotic Syndrome/pathology , Podocytes/physiology , Proteomics , Tissue Array Analysis , Transcriptome , Wnt Signaling Pathway
3.
J Biol Chem ; 295(36): 12822-12839, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32111735

ABSTRACT

A disintegrin and metalloprotease 10 (ADAM10) is a transmembrane protein essential for embryonic development, and its dysregulation underlies disorders such as cancer, Alzheimer's disease, and inflammation. ADAM10 is a "molecular scissor" that proteolytically cleaves the extracellular region from >100 substrates, including Notch, amyloid precursor protein, cadherins, growth factors, and chemokines. ADAM10 has been recently proposed to function as six distinct scissors with different substrates, depending on its association with one of six regulatory tetraspanins, termed TspanC8s. However, it remains unclear to what degree ADAM10 function critically depends on a TspanC8 partner, and a lack of monoclonal antibodies specific for most TspanC8s has hindered investigation of this question. To address this knowledge gap, here we designed an immunogen to generate the first monoclonal antibodies targeting Tspan15, a model TspanC8. The immunogen was created in an ADAM10-knockout mouse cell line stably overexpressing human Tspan15, because we hypothesized that expression in this cell line would expose epitopes that are normally blocked by ADAM10. Following immunization of mice, this immunogen strategy generated four Tspan15 antibodies. Using these antibodies, we show that endogenous Tspan15 and ADAM10 co-localize on the cell surface, that ADAM10 is the principal Tspan15-interacting protein, that endogenous Tspan15 expression requires ADAM10 in cell lines and primary cells, and that a synthetic ADAM10/Tspan15 fusion protein is a functional scissor. Furthermore, two of the four antibodies impaired ADAM10/Tspan15 activity. These findings suggest that Tspan15 directly interacts with ADAM10 in a functional scissor complex.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Membrane Proteins/metabolism , Multiprotein Complexes/metabolism , Tetraspanins/metabolism , A549 Cells , ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Animals , HEK293 Cells , Humans , Jurkat Cells , Membrane Proteins/genetics , Mice , Mice, Knockout , Multiprotein Complexes/genetics , Tetraspanins/genetics
4.
J Clin Invest ; 129(6): 2390-2403, 2019 05 06.
Article in English | MEDLINE | ID: mdl-31063986

ABSTRACT

A disintegrine and metalloproteinase 10 (ADAM10) is implicated in synaptic function through its interaction with postsynaptic receptors and adhesion molecules. Here, we report that levels of active ADAM10 are increased in Huntington's disease (HD) mouse cortices and striata and in human postmortem caudate. We show that, in the presence of polyglutamine-expanded (polyQ-expanded) huntingtin (HTT), ADAM10 accumulates at the postsynaptic densities (PSDs) and causes excessive cleavage of the synaptic protein N-cadherin (N-CAD). This aberrant phenotype is also detected in neurons from HD patients where it can be reverted by selective silencing of mutant HTT. Consistently, ex vivo delivery of an ADAM10 synthetic inhibitor reduces N-CAD proteolysis and corrects electrophysiological alterations in striatal medium-sized spiny neurons (MSNs) of 2 HD mouse models. Moreover, we show that heterozygous conditional deletion of ADAM10 or delivery of a competitive TAT-Pro-ADAM10709-729 peptide in R6/2 mice prevents N-CAD proteolysis and ameliorates cognitive deficits in the mice. Reduction in synapse loss was also found in R6/2 mice conditionally deleted for ADAM10. Taken together, these results point to a detrimental role of hyperactive ADAM10 at the HD synapse and provide preclinical evidence of the therapeutic potential of ADAM10 inhibition in HD.


Subject(s)
ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Cognitive Dysfunction/enzymology , Huntington Disease/enzymology , Membrane Proteins/metabolism , Post-Synaptic Density/enzymology , ADAM10 Protein/genetics , Adult , Aged , Amyloid Precursor Protein Secretases/genetics , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Cadherins/genetics , Cadherins/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Disease Models, Animal , Female , HEK293 Cells , Humans , Huntington Disease/genetics , Huntington Disease/pathology , Male , Membrane Proteins/genetics , Mice, Transgenic , Middle Aged , Post-Synaptic Density/genetics , Post-Synaptic Density/pathology
5.
Cell Mol Life Sci ; 75(17): 3251-3267, 2018 09.
Article in English | MEDLINE | ID: mdl-29520422

ABSTRACT

A disintegrin and metalloproteinase 10 (ADAM10) plays a major role in the ectodomain shedding of important surface molecules with physiological and pathological relevance including the amyloid precursor protein (APP), the cellular prion protein, and different cadherins. Despite its therapeutic potential, there is still a considerable lack of knowledge how this protease is regulated. We have previously identified tetraspanin15 (Tspan15) as a member of the TspanC8 family to specifically associate with ADAM10. Cell-based overexpression experiments revealed that this binding affected the maturation process and surface expression of the protease. Our current study shows that Tspan15 is abundantly expressed in mouse brain, where it specifically interacts with endogenous ADAM10. Tspan15 knockout mice did not reveal an overt phenotype but showed a pronounced decrease of the active and mature form of ADAM10, an effect which augmented with aging. The decreased expression of active ADAM10 correlated with an age-dependent reduced shedding of neuronal (N)-cadherin and the cellular prion protein. APP α-secretase cleavage and the expression of Notch-dependent genes were not affected by the loss of Tspan15, which is consistent with the hypothesis that different TspanC8s cause ADAM10 to preferentially cleave particular substrates. Analyzing spine morphology revealed no obvious differences between Tspan15 knockout and wild-type mice. However, Tspan15 expression was elevated in brains of an Alzheimer's disease mouse model and of patients, suggesting that upregulation of Tspan15 expression reflects a cellular response in a disease state. In conclusion, our data show that Tspan15 and most likely also other members of the TspanC8 family are central modulators of ADAM10-mediated ectodomain shedding in vivo.


Subject(s)
ADAM10 Protein/genetics , Gene Expression Profiling/methods , Gene Expression Regulation , Tetraspanins/genetics , ADAM10 Protein/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Cells, Cultured , Humans , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Protein Binding , Rats , Synapses/metabolism , Tetraspanins/metabolism
6.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt B): 2071-2081, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28624438

ABSTRACT

Proteolytic cleavage represents a unique and irreversible posttranslational event regulating the function and half-life of many intracellular and extracellular proteins. The metalloproteinase ADAM10 has raised attention since it cleaves an increasing number of protein substrates close to the extracellular membrane leaflet. This "ectodomain shedding" regulates the turnover of a number of transmembrane proteins involved in cell adhesion and receptor signaling. It can initiate intramembrane proteolysis followed by nuclear transport and signaling of the cytoplasmic domain. ADAM10 has also been implicated in human disorders ranging from neurodegeneration to dysfunction of the immune system and cancer. Targeting proteases for therapeutic purposes remains a challenge since these enzymes including ADAM10 have a wide range of substrates. Accelerating or inhibiting a specific protease activity is in most cases associated with unwanted side effects and a therapeutic useful window of application has to be carefully defined. A better understanding of the regulatory mechanisms controlling the expression, subcellular localization and activity of ADAM10 will likely uncover suitable drug targets which will allow a more specific and fine-tuned modulation of its proteolytic activity.


Subject(s)
ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Membrane Proteins/genetics , Molecular Targeted Therapy , Neoplasms/genetics , Nerve Degeneration/genetics , ADAM10 Protein/therapeutic use , Amyloid Precursor Protein Secretases/therapeutic use , Humans , Immune System/metabolism , Immune System/pathology , Membrane Proteins/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Nerve Degeneration/drug therapy , Nerve Degeneration/pathology , Protein Processing, Post-Translational/genetics , Proteolysis
7.
Front Mol Neurosci ; 10: 37, 2017.
Article in English | MEDLINE | ID: mdl-28194097

ABSTRACT

[This corrects the article on p. 149 in vol. 9, PMID: 28066176.].

8.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 217-230, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27818272

ABSTRACT

Despite existing knowledge about the role of the A Disintegrin and Metalloproteinase 10 (ADAM10) as the α-secretase involved in the non-amyloidogenic processing of the amyloid precursor protein (APP) and Notch signalling we have only limited information about its regulation. In this study, we have identified ADAM10 interactors using a split ubiquitin yeast two hybrid approach. Tetraspanin 3 (Tspan3), which is highly expressed in the murine brain and elevated in brains of Alzheimer´s disease (AD) patients, was identified and confirmed to bind ADAM10 by co-immunoprecipitation experiments in mammalian cells in complex with APP and the γ-secretase protease presenilin. Tspan3 expression increased the cell surface levels of its interacting partners and was mainly localized in early and late endosomes. In contrast to the previously described ADAM10-binding tetraspanins, Tspan3 did not affect the endoplasmic reticulum to plasma membrane transport of ADAM10. Heterologous Tspan3 expression significantly increased the appearance of carboxy-terminal cleavage products of ADAM10 and APP, whereas N-cadherin ectodomain shedding appeared unaffected. Inhibiting the endocytosis of Tspan3 by mutating a critical cytoplasmic tyrosine-based internalization motif led to increased surface expression of APP and ADAM10. After its downregulation in neuroblastoma cells and in brains of Tspan3-deficient mice, ADAM10 and APP levels appeared unaltered possibly due to a compensatory increase in the expression of Tspans 5 and 7, respectively. In conclusion, our data suggest that Tspan3 acts in concert with other tetraspanins as a stabilizing factor of active ADAM10, APP and the γ-secretase complex at the plasma membrane and within the endocytic pathway.


Subject(s)
ADAM10 Protein/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/genetics , Endosomes/metabolism , Membrane Proteins/genetics , Presenilins/genetics , Tetraspanins/genetics , ADAM10 Protein/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Brain Chemistry , Cadherins/genetics , Cadherins/metabolism , Cell Line, Tumor , Cell Membrane/metabolism , Endocytosis , Endosomes/chemistry , Gene Expression Regulation , HEK293 Cells , Humans , Membrane Proteins/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Presenilins/metabolism , Protein Binding , Protein Transport , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction , Tetraspanins/metabolism , Two-Hybrid System Techniques
9.
Front Mol Neurosci ; 9: 149, 2016.
Article in English | MEDLINE | ID: mdl-28066176

ABSTRACT

Tetraspanins are a family of ubiquitously expressed and conserved proteins, which are characterized by four transmembrane domains and the formation of a short and a large extracellular loop (LEL). Through interaction with other tetraspanins and transmembrane proteins such as growth factors, receptors and integrins, tetraspanins build a wide ranging and membrane spanning protein network. Such tetraspanin-enriched microdomains (TEMs) contribute to the formation and stability of functional signaling complexes involved in cell activation, adhesion, motility, differentiation, and malignancy. There is increasing evidence showing that the tetraspanins also regulate the proteolysis of the amyloid precursor protein (APP) by physically interacting with the APP secretases. CD9, CD63, CD81, Tspan12, Tspan15 are among the tetraspanins involved in the intracellular transport and in the stabilization of the gamma secretase complex or ADAM10 as the major APP alpha secretase. They also directly regulate, most likely in concert with other tetraspanins, the proteolytic function of these membrane embedded enzymes. Despite the knowledge about the interaction of tetraspanins with the secretases not much is known about their physiological role, their importance in Alzheimer's Disease and their exact mode of action. This review aims to summarize the current knowledge and open questions regarding the biology of tetraspanins and the understanding how these proteins interact with APP processing pathways. Ultimately, it will be of interest if tetraspanins are suitable targets for future therapeutical approaches.

SELECTION OF CITATIONS
SEARCH DETAIL
...